使用STL中的优先队列处理“合并果子”问题

本文探讨了一种果子合并问题,旨在通过合理安排果子合并顺序,以最小化合并过程中消耗的体力总和。文章提供了一种有效的算法思路,即始终选择当前堆中质量最小的两堆果子进行合并,并使用C++优先队列实现该算法,最后通过数据测试验证了算法的有效性。
摘要由CSDN通过智能技术生成

问题描述:

有n堆果子,每堆果子质量已知,现在需要把这些果子合并成一堆,但是每次只能把两堆果子合并到一起,同时会消耗与两堆果子质量之和等值的体力。显然,在进行n-1次合并之后,就只剩下一堆了。为了尽可能节省体力,请设计出合并的次序方案,使得耗费的体力最少,并给出消耗的体力值。

例如:3堆果子,质量依次为1,2,3。则最少消耗的体力为:先合并1和2,消耗3体力;然后合并3和3,耗费6体力,总共耗费9体力。

解题思路:每次都找当前堆中拥有最小的质量的两堆果子,合并之。然后继续上一步操作,直到剩余果子只有一堆。

可使用C++中的优先队列来实现,每次都取小顶堆的首部元素,取两次,然后合并,累加求和。

代码实现如下:

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <queue>
using namespace std;

priority_queue<long long, vector<long long>, greater<long long>> q;

int main()
{
	int n;
	long long temp;
	scanf("%d", &n);
	for (int i = 0; i < n; ++i)
	{
		scanf("%lld", &temp);
		q.push(temp);
	}

	long long t1, t2, ans = 0;
	while (q.size() > 1)
	{
		t1 = q.top();
		q.pop();

		t2 = q.top();
		q.pop();

		q.push(t1 + t2);
		ans += t1 + t2;
	}
	printf("%lld", ans);
	return 0;
}

数据测试:

5
1 2 1 2 3
20

谢谢阅读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值