问题描述:
有n堆果子,每堆果子质量已知,现在需要把这些果子合并成一堆,但是每次只能把两堆果子合并到一起,同时会消耗与两堆果子质量之和等值的体力。显然,在进行n-1次合并之后,就只剩下一堆了。为了尽可能节省体力,请设计出合并的次序方案,使得耗费的体力最少,并给出消耗的体力值。
例如:3堆果子,质量依次为1,2,3。则最少消耗的体力为:先合并1和2,消耗3体力;然后合并3和3,耗费6体力,总共耗费9体力。
解题思路:每次都找当前堆中拥有最小的质量的两堆果子,合并之。然后继续上一步操作,直到剩余果子只有一堆。
可使用C++中的优先队列来实现,每次都取小顶堆的首部元素,取两次,然后合并,累加求和。
代码实现如下:
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <queue>
using namespace std;
priority_queue<long long, vector<long long>, greater<long long>> q;
int main()
{
int n;
long long temp;
scanf("%d", &n);
for (int i = 0; i < n; ++i)
{
scanf("%lld", &temp);
q.push(temp);
}
long long t1, t2, ans = 0;
while (q.size() > 1)
{
t1 = q.top();
q.pop();
t2 = q.top();
q.pop();
q.push(t1 + t2);
ans += t1 + t2;
}
printf("%lld", ans);
return 0;
}
数据测试:
5
1 2 1 2 3
20
谢谢阅读