博主不定期更新【保研/推免、C/C++、5G移动通信、Linux、生活随笔】系列文章,喜欢的朋友【点赞+关注】支持一下吧!
本文记录了我在参与上科大夏令营期间,去上交密院与一位老师面谈的全过程。
先说一下缘起,上篇说到,上科大夏令营时间安排较自由,第二天下午及之后都是自由安排与教授的面谈,我的三次面谈全都在第二天下午结束,因此第三天就完全空出来了,我想不如趁着这个机会去见一下我之前联系过的上交密院的一位老师,于是我通过邮件与老师约好了时间,第三天就去见老师了。
老师看见我,表示很惊讶,没有想到我会直接过来见他。闲聊了几句之后,就开始问我一些专业课问题:
- 做个英文自我介绍
- 傅里叶变换和傅里叶级数的区别
傅里叶级数是用来对周期函数进行展开的,如果原函数的频率为w,则展开的各项中,除了常数项,其他每一项的频率都是w的整数倍。
当原函数为非周期函数的时候,则可以看成周期无穷大,频率w无穷小的情况,同样通过傅立叶级数进行展开,可是这时候可以看到,每一项前面的系数都开始趋于无穷小,但是这个原函数确实是由各种频率分量组合而成的,只不过每一个分量的作用都非常小。
这时候为了看到各种频率分量之间的关系,前辈们在以上这个无穷小的系数上除了一个无穷小量1/T,这样得到了一般意义上的傅立叶变换,即,每个频率分量代表着各自的相对大小。
- 傅里叶变换存在的条件
充分条件:满足在无限区间上绝对可积条件的连续信号,或满足在无限区间上绝对可和条件的离散信号,总的来说,都是能量有限的信号。引入广义函数的概念后,许多绝对不可积/和的函数傅里叶变换也存在。
- 香农公式?信道容量含义?带宽增加,信道容量怎么变?香农公式的前提条件?
香农公式:
信道容量:信道容量是指在白噪声背景下,信道中信息无差错传输的最大速率。
带宽增加,信道容量会增加,当B趋于无穷大时,C达到最大值;香农公式的前提条件是 ①带宽受限且受加性高斯白噪声干扰的信道 ②最佳信号分布为高斯分布(信源熵最大,从而输入输出互信息量最大,即达到信道容量,根据公式易证明。)
- 什么是多径效应?什么是随参信道、恒参信道?恒参信道是否会发生多径效应?
多径效应(multipatheffect),是电波传播信道中的多径传输现象所引起的干涉延时效应。在实际的无线电波传播信道中(包括所有波段),常有许多时延不同的传输路径。各条传播路径会随时间变化,参与干涉的各分量场之间的相互关系也就随时间而变化,由此引起合成波场的随机变化,从而形成总的接收场的衰落,多径效应是衰落的重要成因。
另一种答案:由于多径传播对信号产生的影响称为多径效应。①多径传播使单一频率的正弦信号变成了包络和相位受调制的窄带信号,这种信号称为衰落信号,即多径传播使信号产生瑞利型衰落;②多径传播使单一谱线变成了窄带频谱,即多径传播引起了频率弥散。
信道特性主要由传输媒质所决定。如果传输媒质是基本不随时间变化的,所构成的广义信道通常属于恒参信道;如果传输媒质随时间随机快变化,则构成的广义信道通常属于随参信道。恒参信道的信道特性不随时间变化或变化很缓慢,随参信道是指信道传输特性随时间随机快速变化的信道。
恒参信道不会发生多径效应。(不确定)
- 什么是高斯信道?AWGN中W是什么意思?什么是白噪声?
高斯信道是指信道噪声呈高斯分布,AWGN又称加性高斯白噪声(Additive White Gaussian Noise),W是白色的意思,白噪声是指一种功率谱密度为常数的随机信号。换句话说,此信号在各个频段上的功率是一样的。
- 极点的作用?根据极点如何判断系统稳定性?前提条件是什么?(因果系统)
根据极点分布可以判断出系统的稳定性。对于离散系统,极点全部在单位圆内的因果系统是稳定的;对于连续系统,极点全部在左半平面的因果系统是稳定的,这样判断的前提条件是系统是因果的。
- 什么是贝叶斯定理?
贝叶斯定理是关于随机事件A和B的条件概率的一则定理:P(A|B)=P(A)P(B|A) / P(B)
又可以表示为:,其中,是事件A的一个划分。
- 做过什么科研项目?
- 还报了什么学校?
由于我之前没有怎么准备,面试表现一般,老师表示理解,但我之前跟老师说想读硕士,而他现在只有一个博士名额,看我不太想读博士,本科也没有科研经历,因此推荐我去联系密院其他老师,于是就这样结束了面谈,由于密院做通信方向的老师很少,我也没报太大希望,这样的结果也是意料之中,但难免还是会有一点失落(上交硕士梦就这样彻底破灭了,之前还不相信哈哈哈)。
对于西电想去上交密院的学弟学妹,有一点建议是,上交密院和电院不同的是,对外宣称硕博都招,但是根据我校往届学长学姐的录取经历来看,硕士基本是不招西电学生的,而且密院研究通信方向的老师很少,如果想去,一定要尽早联系老师,并且做好只能直博的心理准备,通院14级、15级都有去上交密院直博的学长学姐,西电的学弟学妹们可以向学长学姐请教。
传送门:保研之旅系列文章