分组背包问题
有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
Code:
#include<iostream>
using namespace std;
const int maxn=1e2+7;
int f[maxn],v[maxn],w[maxn];
int main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
int s;
cin>>s;
for(int j=1;j<=s;j++) cin>>v[j]>>w[j];
for(int j=m;j>=0;j--){
for(int k=1;k<=s;k++){
if(j>=v[k]) f[j]=max(f[j],f[j-v[k]]+w[k]);
}
}
}
cout<<f[m]<<"\n";
}