Today is Ignatius’ birthday. He invites a lot of friends. Now it’s dinner time. Ignatius wants to know how many tables he needs at least. You have to notice that not all the friends know each other, and all the friends do not want to stay with strangers.
One important rule for this problem is that if I tell you A knows B, and B knows C, that means A, B, C know each other, so they can stay in one table.
For example: If I tell you A knows B, B knows C, and D knows E, so A, B, C can stay in one table, and D, E have to stay in the other one. So Ignatius needs 2 tables at least.
Input
The input starts with an integer T(1<=T<=25) which indicate the number of test cases. Then T test cases follow. Each test case starts with two integers N and M(1<=N,M<=1000). N indicates the number of friends, the friends are marked from 1 to N. Then M lines follow. Each line consists of two integers A and B(A!=B), that means friend A and friend B know each other. There will be a blank line between two cases.
Output
For each test case, just output how many tables Ignatius needs at least. Do NOT print any blanks.
Sample Input
2
5 3
1 2
2 3
4 5
5 1
2 5
Sample Output
2
4
题意
n个人分成m对,然后每一对表示是好朋友,可以坐在一张桌子上,然后问你一共需要几张桌子;
思路:
用并查集把每一对数据进行合并,结束后用循环判断一共有几个人的祖先是自己本身,那么就需要几个桌子;
#include <iostream>
#include <cstdio>
using namespace std;
const int maxx=1e6+7;
int pre[maxx],a[maxx];
int find(int x)
{
if(pre[x]!=x)
{
pre[x]=find(pre[x]);
}
return pre[x];
}
void join(int x,int y)
{
int fx=find(x),fy=find(y);
if(fx!=fy)
pre[fx]=fy;
}
int main()
{
int n,m;
int t;
cin >>t;
while(t--)
{
scanf("%d%d",&n,&m);
int ans=0;
for(int i=0;i<=n;i++) pre[i]=i;
for(int i=0;i<m;i++)
{
int x,y;
cin >>x>>y;
join(x,y);
}
for(int i=1;i<=n;i++)
{
if(i==find(i)) ans++;
}
cout <<ans<<endl;
}
return 0;
}