AcWing 1172. 祖孙询问 (lca模板)

整理的算法模板:ACM算法模板总结(分类详细版)

 

给定一棵包含 nn 个节点的有根无向树,节点编号互不相同,但不一定是 1∼n1∼n。

有 mm 个询问,每个询问给出了一对节点的编号 xx 和 yy,询问 xx 与 yy 的祖孙关系。

输入格式

输入第一行包括一个整数 表示节点个数;

接下来 nn 行每行一对整数 aa 和 bb,表示 aa 和 bb 之间有一条无向边。如果 bb 是 −1−1,那么 aa 就是树的根;

第 n+2n+2 行是一个整数 mm 表示询问个数;

接下来 mm 行,每行两个不同的正整数 xx 和 yy,表示一个询问。

输出格式

对于每一个询问,若 xx 是 yy 的祖先则输出 11,若 yy 是 xx 的祖先则输出 22,否则输出 00。

数据范围

1≤n,m≤4×1041≤n,m≤4×104,
1≤每个节点的编号≤4×1041≤每个节点的编号≤4×104

输入样例:

10
234 -1
12 234
13 234
14 234
15 234
16 234
17 234
18 234
19 234
233 19
5
234 233
233 12
233 13
233 15
233 19

输出样例:

1
0
0
0
2

每日靠写写模板题勉强度日。。。。。;裸的最近最近公共最先;

(我自己给自己说一遍步骤吧,反正也没人看) 

depth[]代表一个数的深度   fa[i][j]代表从节点i往上跳跃2的j次方个点得到的节点坐标;

哨兵:如果从i开始跳2^ j 个节点跳过了根节点,那么fa[i,j]=0,depth[0]=0;

步骤:

  1. 先将两个点跳到同一层(原理为数的二进制分解)
  2. 让两个点同时往上跳,一直跳到他们最近公共祖先的下一层

时间复杂度:bfs处理每个点的深度O(nlogn);   查询 O(logn);

板子:

#include <bits/stdc++.h>
using namespace std;
const int N=2e5+7,M=N*2;
int h[N],ne[M],e[M],idx;
int depth[N],fa[N][30];
int qq[N];
void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void bfs(int root)
{
    memset(depth,0x3f,sizeof depth);
    queue<int> q;
    q.push(root);
    depth[0]=0,depth[root]=1;
    while(q.size())
    {
        int t=q.front();
        q.pop();
        for(int i=h[t];~i;i=ne[i])
        {
            int j=e[i];
            if(depth[j]>depth[t]+1)
            {
                depth[j]=depth[t]+1;
                fa[j][0]=t;
                q.push(j);
                for(int k=1;k<30;k++)
                    fa[j][k]=fa[fa[j][k-1]][k-1];
            }
        }
    }
}
int lca(int a,int b)
{
    if(depth[a]<depth[b]) swap(a,b);
    for(int k=19;k>=0;k--)
        if(depth[fa[a][k]]>=depth[b]) 
            a=fa[a][k];
    if(a==b) return a;
    for(int k=29;k>=0;k--)
    {
        if(fa[a][k]!=fa[b][k])
        {
            a=fa[a][k];
            b=fa[b][k];
        }
    }
    return fa[a][0];
}
int main()
{
    memset(h,-1,sizeof h);
    int u,v,n,m;
    scanf("%d %d",&n,&m);
    for(int i=1;i<n;i++)
    {
        scanf("%d %d",&u,&v);//存图
        add(u,v);
        add(v,u);
    }
    bfs(1);
    while(m--)
    {
    	int q;
    	cin >>q;
    	for(int i=0;i<q;i++) cin >>qq[i];
		int flag=1;
    	int maxx=depth[qq[0]],res=0;
    	for(int i=1;i<q;i++) if(depth[qq[i]]>maxx) maxx=depth[qq[i]],res=i;
		for(int i=0;i<q;i++)
		{
			int fa=lca(qq[i],qq[res]);
			if(abs(depth[fa]-depth[qq[i]])>1)
			{
				flag=0;
				break;
			}
		}
		if(flag) cout <<"YES"<<endl;
		else cout <<"NO"<<endl;
	}
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值