前言
每个想要学习深度学习、图像识别的同学,想要用到神经网络,入门的实例必定是MNIST手写数字集,这是所有人都绕不开的,我也是,我之前写了三篇关于MNIST的博文。en…但这个数据集毕竟只有手写数字,有时候并不是能够满足我们开发的要求,于是,Fashion-MNIST出现了。
提示:以下是本篇文章正文内容,下面案例可供参考
一、Fashion-MNIST是什么?
这个数据集是我们国家的一个大佬制作的,还发表了论文:Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms,其中值得我们关注的是数据制作的方法:最原始图片是背景为浅灰色的,分辨率为7621000 的JPEG图片。然后经过resampled 到 5173 的彩色图片。然后依次经过以下7个步骤,最终得到28*28的灰度图。
2017年8月27日,Fashion-MNIST图片库在GitHub上开源,MNIST的时代宣告终结。
这不是巧合,而是Fashion-MNIST蓄谋已久。它克隆了MNIST的所有外在特征:
60000张训练图像和对应Label;
10000张测试图像和对应Label;
10个类别;
每张图像28x28的分辨率;
4个GZ文件名称都一样;
对于已有的MNIST训练程序,只要修改下代码中的数据集读取路径,或者残暴的用Fashion-MNIST数据集文件将MNIST覆盖,替换就瞬间完成了。
不同的是,Fashion-MNIST不再是抽象符号,而是更加具象化的人类必需品——服装,共10大类。
我认为对于衣服的识别,相比于手写数字的识别更加有意义。相比之下,Fashion-MNIST更难,有一位博主对于MNIST可以达到95%识别率的训练代码,去训练Fashion-MNIST,最后模型识别率猛降了10个百分点。对于一个人工智能算法,是否可用的一个根本性度量标准就是:不亚于人类。
二、代码实现
1.引入库
代码如下(示例):
from __future__ import absolute_import, division, print_function, unicode_literals
# 载入TensorFlow 和 tf.keras
import tensorflow as tf
from tensorflow import keras
# 载入 辅助包
import numpy as np
import matplotlib.pyplot as plt
# 输出当前的tf版本
# print(tf.__ver