[日常] 从零安装bert-as-a-service (Python = 3.7, tensorflow= 1.15.0)

本文档详细介绍了如何在Python 3.7环境中,从零开始搭建TensorFlow 1.15.0和bert-as-a-service,用于将BERT模型应用于PyTorch项目。内容包括创建新环境、安装tensorflow和bert-serving-server、解决兼容性问题,以及安装和测试bert-serving-client。特别指出,bert-as-a-service与TensorFlow 2.x存在兼容性问题,且TensorFlow 1.15.0不支持Python 3.8。
摘要由CSDN通过智能技术生成

1. 废话

  • 众所周知Python写工程最麻烦的就是配环境,你永远不知道某个库哪个版本更新又删掉/修改了一个API,和其他库有没有兼容性问题,如果你正在尝试某一套没人试过的版本组合,那么只能祝你好运,最好别在这毫无产出的事情上花去两个小时,比如我。

2. 你应当知道的

  • BERT是Google推出的预训练模型,自然是用Google家的tensorflow来训练的。
  • 但是现在往往是pytorch用的比较多,那么如何把bert应用到pytorch项目中呢,这就用到了bert-as-a-service这个库。
  • 作为服务端,可以新开一个虚拟环境(笔者用conda),从新安装tensorflow和bert-serving-server
  • 作为客户端,可以使用原来的pytorch的环境,只需要安装bert-serving-client
  • 服务端和客户端是使用websocket来通信的,即网络,意味着你可以把两者装到不同的主机上,也可以装到相同的主机上。
  • 安装的bert-as-a-service并不包含具体的数据文件,请查阅hanxiao_bert-as-service_ Mapping a variable-length sentence to a fixed-length vector using BERT model.html中的List of released pretrained BERT models (click to expand...)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值