1. 废话
- 众所周知Python写工程最麻烦的就是配环境,你永远不知道某个库哪个版本更新又删掉/修改了一个API,和其他库有没有兼容性问题,如果你正在尝试某一套没人试过的版本组合,那么只能祝你好运,最好别在这毫无产出的事情上花去两个小时,比如我。
2. 你应当知道的
- BERT是Google推出的预训练模型,自然是用Google家的tensorflow来训练的。
- 但是现在往往是pytorch用的比较多,那么如何把bert应用到pytorch项目中呢,这就用到了bert-as-a-service这个库。
- 作为服务端,可以新开一个虚拟环境(笔者用conda),从新安装tensorflow和
bert-serving-server
。 - 作为客户端,可以使用原来的pytorch的环境,只需要安装
bert-serving-client
。 - 服务端和客户端是使用
websocket
来通信的,即网络,意味着你可以把两者装到不同的主机上,也可以装到相同的主机上。 - 安装的bert-as-a-service并不包含具体的数据文件,请查阅hanxiao_bert-as-service_ Mapping a variable-length sentence to a fixed-length vector using BERT model.html中的
List of released pretrained BERT models (click to expand...)