ICPC2018 Nakhon Pathom-Floating-Point Hazard(浮点数的坏处)(导数的定义)

Given the value of low, high you will have to find the value of the following expression: 

给你下界和上界的值,你得算出以下表达式的值:

If you try to find the value of the above expression in a straightforward way, the answer may be incorrect due to precision error. 

如果你对以上表达式进行直接计算,那么答案很有可能因为精度误差而错误。

输入

The input file contains at most 2000 lines of inputs. Each line contains two integers which denote the value of low, high (1 ≤ low ≤ high ≤ 2000000000 and high-low ≤ 10000). Input is terminated by a line containing two zeroes. This line should not be processed.  

输入文件包含至多2000条输入,每一行包含两个整数,代表下界和上界。输入以一行内的两个0结束,并不作处理。

输出

For each line of input produce one line of output. This line should contain the value of the expression above in exponential format. The mantissa part should have one digit before the decimal point and be rounded to five digits after the decimal point.  To be more specific the output should be of the form d.dddddE-ddd, here d means a decimal digit and E means power of 10. Look at the output for sample input for details. Your output should follow the same pattern as shown below. 

对于每一组输入,输出一行答案。这行内应当包含一个以指数形式(科学计数法)表示的求得的上述表达式的值。尾数部分应当在保留一位数字,并在小数点后保留五位小数。更准确的说输出应当是d.dddddE-ddd的形式,d代表一个数字,e代表10的幂。细节部分请观察样例输出。你的输出应该和下列的样例模式上对应。

输入

1 100
10000 20000
0 0

输出

3.83346E-015
5.60041E-015

这个题每个高中毕业的人都会做,只不过这个题干不说人话罢了。以我们熟悉的形式翻译一下:

给定函数:f(x)=\sqrt[3]{x+10^{-15}}-\sqrt[3]{x},设该函数在定义域上连续可导,给定区间上界为b,下界为a。

对于任意整数x∈[a,b],当x从a连续变化到b时,求f(x)的函数值的和。

 

这个原函数的形式像极了导数定义式的上半部分:f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x},当\Delta x趋近于无穷小时,我们称此处的值为函数f(x)在x处的导数。根据原式,我们断定\Delta x=10^{-15},由于这个数足够小,我们可以认为其为无穷小。

根据求导公式可知:f'(x)=\frac{f(x+10^{-15})-f(x)}{10^{-15}}=(x^{\frac{1}{3}})' =\frac{1}{3}x^{-\frac{2}{3}},两边同乘10^{-15}可以得到原表达式,对整式右边的函数进行计算即可。

所以有如下思路:

  1. 求得等价函数,进行求和
  2. 将求得的和进行处理,直至满足答案形式

代码如下:

#include <iostream>
#include <cstdio>
#include <bits/stdc++.h>
#include <map>
#include <algorithm>
#include <stack>
#include <iomanip>
#include <cstring>
#include <cmath>
#define DETERMINATION main
#define lldin(a) scanf("%lld",&a)
#define din(a) scanf("%d",&a)
#define printlnlld(a) printf("%lld\n",a)
#define printlnd(a) printf("%d\n",a)
#define printlld(a) printf("%lld",a)
#define printd(a) printf("%d",a)
#define reset(a,b) memset(a,b,sizeof(a))
const long long int INF=0x3f3f3f3f;
using namespace std;
const double PI=acos(-1);
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int mod=1000000007;
const int tool_const=1999112620000907;
const int tool_const2=33;
inline ll lldcin()
{
    ll tmp=0,si=1;
    char c=getchar();
    while(c>'9'||c<'0')
    {
        if(c=='-')
            si=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9')
    {
        tmp=tmp*10+c-'0';
        c=getchar();
    }
    return si*tmp;
}
///Schlacht von Stalingrad
/**Although there will be many obstructs ahead,
the desire for victory still fills you with determination..**/
int DETERMINATION()
{
    ll x1,x2;
    while(cin>>x1>>x2&&(x1+x2))
    {
        ld sum=0;
        for(int i=x1;i<=x2;i++)
            sum+=pow(i,-2.0/3)/3;
        ll final_power=15;//这是最后的指数
        while(sum>10)
        {
            final_power--;
            sum/=10;
        }
        while(sum<1)
        {
            final_power++;
            sum*=10;
        }
        cout<<fixed<<setprecision(5)<<sum<<"E-";
        cout<<setw(3)<<setfill('0')<<final_power<<endl;
    }
    return 0;

 

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值