LeetCode String 5 Longest Palindromic Substring

12 篇文章 0 订阅

5. Longest Palindromic Substring

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example 1:

Input: “babad”
Output: “bab”
Note: “aba” is also a valid answer.
Example 2:

Input: “cbbd”
Output: “bb”

solution 1: Longest Common Substring

Common mistake

Some people will be tempted to come up with a quick solution, which is unfortunately flawed (however can be corrected easily):

Reverse S S S and become S ′ S' S. Find the longest common substring between S S S and S ′ S' S, which must also be the longest palindromic substring.
This seemed to work, let’s see some examples below.
For example, S = " c a b a " S = "caba" S="caba", S ′ = " a b a c " S' = "abac" S="abac".
The longest common substring between S S SS and S ′ S' S is “aba”, which is the answer.
Let’s try another example: S = " a b a c d f g d c a b a " S = "abacdfgdcaba" S="abacdfgdcaba", S ′ = " a b a c d g f d c a b a " S' = "abacdgfdcaba" S="abacdgfdcaba".
The longest common substring between S S S and S ′ S' S is “abacd”. Clearly, this is not a valid palindrome.

Algorithm
We could see that the longest common substring method fails when there exists a reversed copy of a non-palindromic substring in some other part of S S S. To rectify this, each time we find a longest common substring candidate, we check if the substring’s indices are the same as the reversed substring’s original indices. If it is, then we attempt to update the longest palindrome found so far; if not, we skip this and find the next candidate.

This gives us an O ( n 2 ) O(n^2) O(n2) Dynamic Programming solution which uses O ( n 2 ) O(n^2) O(n2) space (could be improved to use O ( n ) O(n) O(n) space).

solution 2: Brute Force

The obvious brute force solution is to pick all possible starting and ending positions for a substring, and verify if it is a palindrome.

Complexity Analysis
Time complexity : O ( n 3 ) O(n^3) O(n3). Assume that nn is the length of the input string, there are a total of ( n 2 ) = n ( n − 1 ) 2 \binom{n}{2} = \frac{n(n-1)}{2} (2n)=2n(n1) such substrings (excluding the trivial solution where a character itself is a palindrome). Since verifying each substring takes O ( n ) O(n) O(n) time, the run time complexity is O ( n 3 ) O(n^3) O(n3).
Space complexity : O ( 1 ) O(1) O(1).

solution 3: Dynamic Programming

To improve over the brute force solution, we first observe how we can avoid unnecessary re-computation while validating palindromes. Consider the case “ababa”. If we already knew that “bab” is a palindrome, it is obvious that “ababa” must be a palindrome since the two left and right end letters are the same.

We define P ( i , j ) P(i,j) P(i,j)as following:

P ( i , j ) = { true, if the substring  S i … S j  is a palindrome false, otherwise. P(i,j) = \begin{cases} \text{true,} &\quad\text{if the substring } S_i \dots S_j \text{ is a palindrome}\\ \text{false,} &\quad\text{otherwise.} \end{cases} P(i,j)={true,false,if the substring SiSj is a palindromeotherwise.

Therefore,
P ( i , j ) = ( P ( i + 1 , j − 1 )  and  S i = = S j ) P(i, j) = ( P(i+1, j-1) \text{ and } S_i == S_j ) P(i,j)=(P(i+1,j1) and Si==Sj)

The base cases are:
P ( i , i ) = t r u e P(i, i) = true P(i,i)=true
P ( i , i + 1 ) = ( S i = = S i + 1 ) P(i, i+1) = ( S_i == S_{i+1} ) P(i,i+1)=(Si==Si+1)

This yields a straight forward DP solution, which we first initialize the one and two letters palindromes, and work our way up finding all three letters palindromes, and so on…

Complexity Analysis
Time complexity : O ( n 2 ) O(n^2) O(n2).
This gives us a runtime complexity of O ( n 2 ) O(n^2) O(n2)
Space complexity : O ( n 2 ) O(n^2) O(n2)
It uses O ( n 2 ) O(n^2) O(n2) space to store the table.

solution 4 Expand Around Center

In fact, we could solve it in O ( n 2 ) O(n^2) O(n2) time using only constant space.
We observe that a palindrome mirrors around its center. Therefore, a palindrome can be expanded from its center, and there are only 2 n − 1 2n - 1 2n1 such centers.

You might be asking why there are 2 n − 1 2n - 1 2n1 but not nn centers? The reason is the center of a palindrome can be in between two letters. Such palindromes have even number of letters (such as " a b b a " "abba" "abba") and its center are between the two ′ b ′ 'b' bs.

public String longestPalindrome(String s) {
    if (s == null || s.length() < 1) return "";
    int start = 0, end = 0;
    for (int i = 0; i < s.length(); i++) {
        int len1 = expandAroundCenter(s, i, i);
        int len2 = expandAroundCenter(s, i, i + 1);
        int len = Math.max(len1, len2);
        if (len > end - start) {
            start = i - (len - 1) / 2;
            end = i + len / 2;
        }
    }
    return s.substring(start, end + 1);
}

private int expandAroundCenter(String s, int left, int right) {
    int L = left, R = right;
    while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
        L--;
        R++;
    }
    return R - L - 1;
}

Complexity Analysis
Time complexity : O ( n 2 ) O(n^2) O(n2). Since expanding a palindrome around its center could take O ( n ) O(n) O(n) time, the overall complexity is O ( n 2 ) O(n^2) O(n2).
Space complexity : O ( 1 ) O(1) O(1).

solution 5: Manacher’s Algorithm

There is even an O ( n ) O(n) O(n) algorithm called Manacher’s algorithm. However, it is a non-trivial algorithm, and no one expects you to come up with this algorithm in a 45 minutes coding session. But, please go ahead and understand it, I promise it will be a lot of fun.

LeetCode上面有详细的解法说明,参考5. Longest Palindromic Substring

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值