自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 MindSearch CPU-only 版部署

然后我们新建一个目录用于存放 MindSearch 的相关代码,并把 MindSearch 仓库 clone 下来。接下来,我们创建一个 conda 环境来安装相关依赖。

2024-08-29 17:47:32 398

原创 茴香豆:企业级知识库问答工具

在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手,并使用 Gradio 界面完成 2 轮问答(问题不可与教程重复,作业截图需包括 gradio 界面问题和茴香豆回答)。知识库可根据根据自己工作、学习或感兴趣的内容调整,如金融、医疗、法律、音乐、动漫等。

2024-08-29 11:30:57 453

原创 InternVL 部署微调实践

我们使用InternVL2-2B模型。该模型已在share文件夹下挂载好,现在让我们把移动出来。

2024-08-29 09:38:39 496

原创 LMDeploy 量化部署实践闯关任务

关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。针对InternVL系列模型,让我们先进入conda环境,并输入以下指令,执行模型的量化工作。为方便文件管理,我们需要一个存放模型的目录,本教程统一放置在/root/models/目录。

2024-08-28 11:29:25 435

原创 Lagent 自定义你的 Agent 智能体

最后,我们修改 /root/agent_camp3/lagent/examples/internlm2_agent_web_demo.py 来适配我们的自定义工具。然后,我们将下面的代码复制进入 /root/agent_camp3/lagent/lagent/actions/magicmaker.py。接下来,我们将使用 Lagent 的 Web Demo 来体验 InternLM2.5-7B-Chat 的智能体能力。然后,我们在另一个窗口中启动 Lagent 的 Web Demo。

2024-08-26 13:40:20 379

原创 探索 InternLM 模型能力边界-进阶

3. Bad Case

2024-08-25 23:46:38 630

原创 OpenCompass 评测 InternLM-1.8B 实践

确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py ,贴入以下代码。

2024-08-21 16:28:24 250

原创 Llamaindex RAG实践

任务要求:基于 LlamaIndex 构建自己的 RAG 知识库,寻找一个问题 A 在使用 LlamaIndex 之前InternLM2-Chat-1.8B模型不会回答,借助 LlamaIndex 后 InternLM2-Chat-1.8B 模型具备回答 A 的能力,截图保存。确认这个模型是不知道xtuner是什么,再加入xtuner的文档,再尝试一遍。

2024-08-21 11:27:21 225

原创 XTuner 微调个人小助手认知任务

这意味着,当我们访问 Shanghai_AI_Laboratory/internlm2-chat-1_8b 时,实际上就是在访问 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 目录下的内容。通过这种方式,我们无需复制任何数据,就可以直接利用现有的模型文件进行后续的微调操作,从而节省存储空间并简化文件管理。在询问自己是谁的时候按照我们预期的结果进行回复,我们就需要通过在微调数据集中大量加入这样的数据。4.4 模型格式转换。

2024-08-21 09:23:24 244

原创 浦语提示词工程实践-材料提交

背景问题:近期相关研究发现,LLM在对比浮点数字时表现不佳,经验证,internlm2-chat-1.8b (internlm2-chat-7b)也存在这一问题,例如认为13.8<13.11。任务要求:利用LangGPT优化提示词,使LLM输出正确结果。完成一次并提交截图即可。基础任务(完成此任务即完成闯关)

2024-08-19 13:56:49 144

原创 书生大模型全链路开源开放体系的笔记

XTuner可以基于openmmlab,经过flash attention等优化加速,支持QLoRA和LoRA的微调。分布式训练让原来跑不动的代码现在能够有效的跑通,降低硬件要求。节省了成本且提高了效率。

2024-08-07 21:08:41 161

原创 8G 显存玩转书生大模型 Demo

接下来,我们便可以通过 python /root/demo/cli_demo.py 来启动我们的 Demo。(生成300字的故事)首先,我们创建一个目录,用于存放我们的代码。并创建一个 cli_demo.py。然后,我们将下面的代码复制到 cli_demo.py 中。我们首先来为 Demo 创建一个可用的环境。

2024-07-29 13:38:46 194

原创 Python task

Python实现wordcountVscode连接InternStudio debug笔记

2024-07-16 13:12:51 89

原创 L0 Linux

完成SSH连接与端口映射并运行hello_world.py。在vscode中连接开发机并创建conda环境。vscode中的端口映射。

2024-07-15 11:15:52 108 1

原创 第十三届蓝桥杯单片机赛后分享

第十三届蓝桥杯单片机比赛分享

2022-04-13 07:40:11 933

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除