砍树(stump)

时间限制: 1 Sec 内存限制: 64 MB
提交: 54 解决: 21
[提交][状态][讨论版][命题人:外部导入]
题目描述
为了在农场的一块土地上种奶牛吃的草,FJ必须要把前面的N棵树砍掉,这些树紧密地排成一条直线,并且用l~N编号标识,每一棵树都有自己的高度Hi(1≤Hi≤10000)。
FJ想用一种烈性炸药来摧毁这些树,这种烈性炸药除了能摧毁安装了炸药的那棵树以外还能传递压倒两边矮于这一棵树的所有邻近树,直到遇到一棵不低于这一棵树的树为止。
例如:一排树的高度如下:1 2 5 4 3 3 6 6 2,如果FJ在第三棵树上装炸药(高度为5),那么第二棵树也同样给压倒(高度为2<5),第一棵树也同样倒下(高度为1<2),再来看另一边第四棵树(高度为4<5)和第五棵树(高度为3<4)同样也给压倒。剩下的状态为:* * * * * 3 6 6 2,接下来在第7和第8棵树上安装炸药就可以把剩下的树毁掉。
请你帮助Fj利用最少的炸药把这些树毁掉。
输入
第1行:一个整数N(1≤N≤50000);
第2~N+1行:包含各棵树的高度Hi。
输出
l~?行:每一行为一个整数,代表安装炸药的树的编号,按照升序输出。
样例输入
9
1
2
5
4
3
3
6
6
2
样例输出
3
7
8
思路:题目要求最佳方案,则中间大两边小的树高度排列(峰谷状//\)是我们要在这些书中寻找的,找到一个波峰则两边的已经被炸掉的树则要跳过(右边的),到这里我就卡住了,老是想着建立一个标志却忘了数组内部自己就可以跳过。然后就可以从0开始搜索波峰,遇到波峰后输出,找到峰底并从i+1重新找下一个再输出直到遍历数组。
ps:输出应该是i+1.因为数组从0开始而树的编号从1开始。

#include<stdio.h>
 int main()
  {
  	int a[50001];
  	int n;
  	scanf("%d",&n);
  	for(int i=0;i<n;i++)
  	  scanf("%d",&a[i]);
  	for(int i=0;i<n;i++)
	  {
	  	for(;i<n-1,a[i]<a[i+1];i++);
	  	printf("%d\n",i+1);
	  	for(;i<n-1,a[i]>a[i+1];i++); 
	  } 
   } 
### Decision Stump与Decision Tree的区别和联系 #### 定义 - **决策树 (Decision Tree)** 是一种监督学习方法,用于分类和回归任务。通过递归地分割数据集来构建一棵或多棵子树,直到满足特定停止条件为止。每个内部节点表示一个属性上的测试,分支代表可能的结果,叶节点则保存类别标签或数值预测[^4]。 - **决策桩 (Decision Stump)** 实际上是一种特殊的决策树形式,仅包含一层分裂——即根节点直接连接到叶子节点。这意味着它只基于单个特征做出判断,并且通常作为更复杂模型(如随机森林、梯度提升机等集成算法)中的基础估计器被广泛采用[^3]。 #### 特征对比 | 属性 | Decision Tree | Decision Stump | | --- | --- | --- | | 结构深度 | 可以非常深,具有多层嵌套结构 | 浅显简单,只有一次分叉 | | 训练时间 | 较长,因为要遍历多个层次寻找最佳切分点 | 极短,只需考虑单一维度的最佳划分 | | 泛化能力 | 更强,在大多数情况下能提供更好的性能表现 | 较弱,容易过拟合于训练样本 | #### 应用场景 对于某些复杂的机器学习问题来说,单独使用决策树可能会导致过拟合现象;而决策桩由于其简单的特性,则常用来组成强大的集成学习框架的一部分。例如,在Boosting系列算法中,每次迭代都会引入一个新的弱分类器(通常是决策桩),并通过加权组合这些基本单元形成最终的强大预测模型。 ```python from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import AdaBoostClassifier # 创建一个完整的决策树 full_tree = DecisionTreeClassifier(max_depth=None) # 创建一个决策桩 stump = DecisionTreeClassifier(max_depth=1) # 使用AdaBoost创建由许多决策桩组成的强大分类器 boosted_stumps = AdaBoostClassifier(base_estimator=stump) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值