Python机器学习▶线性回归——基于sklearn建立房价预测模型!

该博客介绍了如何使用Python的sklearn库建立线性回归模型预测King County的房价。首先,对数据进行理解、准备和清洗,包括处理缺失值、重复值和异常值。接着,通过对因变量进行对数处理以符合正态分布,建立线性回归模型,并通过R^2评估模型性能。最后,使用模型对测试集进行预测并生成预测结果。
摘要由CSDN通过智能技术生成

 

1. 数据理解

此次建模预测的数据集来源于Data Castle上的“美国King County房价预测训练赛”,链接如下:

数据特征描述如下:

测试集主要包括3000条记录,13个字段,跟训练集的不同是测试集并不包括房屋销售价格,通过由训练集所建立的模型以及所给的测试集,得出测试集相应的房屋销售价格预测值。

 

2.数据准备

环境:win7+Anaconda+Jupyter notebook

  • 导入数据
import pandas as pd
import numpy as np

#导入训练集
train=pd.read_csv(r"F:\Sets\KingCounty\train.csv")
train.head()

发现第一条记录变成了列名,下面进行调整:

#给训练集的列进行赋名
trainNames = ["salesTime","salePrice","bedroomsNum","bathroomNum","housingArea",
              "parkingArea","floorsNum","housingScore","coveredArea",
              "basementArea","buildingTime","repairYear","latitude","longitude"]
train=pd.read_csv(r"F:\Sets\KingCounty\train.csv",names=trainNames)
train.head()

  • 查看训练集的形状

训练集中共10000

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值