【复数表达】Encoding Word Order in Complex Embeddings

1. 简介

论文:ICLR 2020
https://openreview.net/pdf?id=Hke-WTVtwr
代码:https://github.com/iclr-complex-order/complex-order

关联:本质上和之前CNM: An Interpretable Complex-valued Network for Matching是一个代码框架的。只是解释和理论角度不同。

2. 动机:语言是有顺序的

在这里插入图片描述
详细描述如下:

词在文本中的位置顺序是很重要的特征,但是神经网络做NLP建模时词的位置和顺序关系是个问题:

  • 循环神经网络RNN,对词序较为敏感。在做文本分类、匹配、序列标注和生成任务时都不需要额外的机制来建模词位置
  • 卷积神经网络CNN,对局部词序敏感,可以很好的建模N-Gram特征。建模局部任务ok,但在文本生成当中,词序则需要引入额外机制来构建。
  • Transformer(Self Attention)对词序完全不敏感,做文本生成时需要引入额外机制建模词的位置信息。

所以,一种常见的建模词序信息的方式是使用位置编码,也即:在词嵌入层将词向量位置编码向量按位相加。 位置编码可由随机初始化训练得到或三角函数计算。
在这里插入图片描述
这类方法的问题:

  1. 位置编码中每个位置的编码向量是独立训练得到的,
  2. 不同位置的编码向量没有明显的约束关系
    因此,只能建模绝对位置信息,而无法构建不同位置之间的相对关系。(邻接关系)

本文:用一个以位置为变量的向量值函数来表达,替代词向量+位置编码的表达方式。其中这个函数是随位置平滑变换的,用来建模词的相对位置关系。

3. 方法

3.1 定义:复数域:

在这里插入图片描述在这里插入图片描述
词的函数需要满足两个属性

  1. 任意变换位置的转换
    也就是存在一个函数 T r a n s f o r m Transform Transform, 对于任意位置 p o s pos pos和偏执 n > = 1 n>=1 n>=1,均存在:
    在这里插入图片描述
    该公式含义:已知一个词在某个位置的词向量的表示,可以计算出其在任何位置的词向量表示。

  2. 边界
    存在一个正数 δ \delta δ,对于任意位置pos,都有下式成立:
    在这里插入图片描述
    也即:词向量函数的范数是有界的。

本文证明了,在复数域内,如果一个函数满足以上两条性质,当前仅当采用以下形式:
在这里插入图片描述
上面的公式也可以写成指数形式:
在这里插入图片描述

3.2 vs实数域

g ( p o s ) g(pos)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值