【点云系列】Multi-view Neural Human Rendering (NHR)

本文介绍了虞晶怡团队在CVPR2020发表的研究,提出了一种端到端的神经人体渲染框架(NHR),利用PointNet++从点云中提取特征,结合2D CNN处理噪声和不完整数据。该框架包含特征提取、投影与光栅化、渲染三个模块,通过多视角输入改善几何细节。实验结果显示,该方法能有效结合点云和图像信息,提高人体渲染质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 概要

虞晶怡团队作品,CVPR2020,神经渲染系列
论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Wu_Multi-View_Neural_Human_Rendering_CVPR_2020_paper.pdf
项目地址:https://wuminye.github.io/NHR/
数据集:https://wuminye.github.io/NHR/datasets.html

2. 动机

专门针对人体渲染端到端框架(NHR):用点云中PointNet++来提取3D特征 +投射到2D的平滑的CNN来处理噪声和残缺。本质上还是引入了点云来指导渲染的方法。
在这里插入图片描述

3. 方法

流程图

在这里插入图片描述

整体框架

包括三个模块:

  1. 特征提取(FE)
  2. 投影与光栅化(PR)
  3. 渲染(RE)
    在这里插入图片描述

模块1:特征提取(FE)

在这里插入图片描述
Ψ f e \varPsi_{fe} Ψfe: PointNet++特征提取操作,去除分类分支,仅保留分割分支作为FE的分支。
D t D_t Dt:点云的特征描述子
V = v i V={v_i} V=vi:归一化的视角方向, v i = p t i − o ∣ ∣ p t i − o ∣ ∣ 2 v^i = \frac{p^i_t-o}{||p^i_t-o||}_2 vi=ptioptio2, 其中 o o o是目标视角相机的投射中心。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值