python多元线性回归预测时间序列

本文介绍如何利用Z-score标准化后的数据进行python多元线性回归,以预测时间序列。通过训练集拟合模型,并在测试集上评估预测性能,通过绘制预测值与实际值对比曲线以及计算均方根误差来评估模型的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文使用的数据为Z-score标准化后的数据,如何使用进行z-score标准化参照python一行搞定z-score标准化

通过训练集拟合多个变量,并使用测试集评估预测效果。本文除了绘制预测值和实际值的对比曲线之外,计算均方根误差评估准确程度。

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn.model_selection import train_test_split  # 这里是引用了交叉验证
from sklearn.linear_model import LinearRegression  # 线性回归
from sklearn.metrics import mean_squared_error
from math import sqrt

io = 'D:/data/ZZ汇总.xlsx'
dataset = pd.read_excel(io, sheet_name=0)
pd_data=dataset.drop(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值