当使用 ECharts 渲染大规模数据时,可能会出现性能问题例如渲染卡顿。这通常是因为浏览器在处理大量的 DOM 节点时会变得相当缓慢。以下有几种可能的解决办法:
- 关闭动画:ECharts默认的动画效果会消耗一些性能,对于大数据量的图表,可以尝试关闭动画。
let option = {
animation: false,
series: [
// ...
]
};
echarts.setOption(option);
- 使用 large 模式: ECharts 在 series 中提供了一个 large 选项,当数据量特别大(如超过千条数据)时,可以尝试开启 large 模式,此模式下会对绘制进行优化。
let option = {
series: [
{
type: 'scatter',
large: true,
data: largeData,
},
],
};
echarts.setOption(option);
- 启用进度渲染:对于特别大的数据集,我们可以启用 ECharts 的渲染进度条。这可以让用户知道渲染的进度,同时也可以避免浏览器在渲染过程中出现无响应的现象。
这需要在初始化 ECharts 实例时,将 option 中的 progressive 和 progressiveThreshold 属性设置为合适的值。在数据量大于 progressiveThreshold 时,图表会启用渐进渲染。
let option = {
series: [{
type: 'lines',
data: largeData,
// 开启渐进式渲染
progressive: 2000,
// 渲染阈值,大于此值则启动渐进渲染
progressiveThreshold: 5000,
}],
};
echarts.setOption(option);
注意:这些优化方法只能在一定程度上提升性能,并不能完全解决在数据量极大的情况下的性能问题。数据量过大时还可以考虑下面的处理方式
数据进行筛选和抽样来减少渲染点数
-
简单随机抽样
在这个例子中,我们首先抓取所有的原始数据,然后从中随机抽取一定数量的样本。这会确保所有的数据都有相同的被选择为样本的机会。
const rawData = fetchAllData(); // 获取所有的原始数据
const sampledData = [];
const sampleSize = 1000; // 设置我们想抽取的样本的数量
// 循环我们想抽取的样本的数量
for (let i = 0; i < sampleSize; i++) {
// 随机地获取一个原始数据的索引
const index = Math.floor(Math.random() * rawData.length);
// 使用这个随机索引抽取一个样本,并添加到样本的数组
sampledData.push(rawData[index]);
}
// 现在 sampledData 数组包含了我们的随机样本
方法定义
/**
* This method is used to perform simple random sampling from the raw data.
* @returns {Array} Sampled data