题目描述
给定 n个点及 m 条边,每条边都是双向的,第 i 条边的权重为 ci。请处理 q 个询问,每个询问有两个参数 l 和 r,输出仅使用编号在 l 和 r 之间的边可以构成的最小生成树的权重之和,如果不存在,输出 -1。
输入格式
第一行:三个正整数表示 n,m 和 q。
接下来 mmm 行:每行三个整数表示 ai,bi 和 ci,代表一条边连接 ai 号点和 bi 号点,ai≠bi,其权重为 ci。
接下来 q 行:每行两个整数表示 li 和 ri,代表一条查询的两个参数。
输出格式
对于每一条查询,输出一个整数,若编号在参数范围内的边可以构成生成树,则输出其中最小生成树的权重之和;否则输出 -1。
数据范围
1≤n≤100
1≤ci≤50000
对于 30%的数据,
m≤1000,q≤1000
对于 60的数据,m≤10000,q≤10000
对于 100%的数据,1≤m≤40000,1≤q≤40000
题解:
#iclude<bits/stdc++.h>
#define PI acos(-1)
#define eps 1e-8
#define inf 0x3f3f3f3f
#define debug(x) cout<<"---"<<x<<"---"<<endl
typedef long long ll;
using namespace std;
#define maxn 200005
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
int Sum[maxn << 2], Add[maxn << 2];
int A[maxn], n;
void PushUp(int rt)
{
Sum[rt] = max(Sum[rt <