首先约定:先序:根,左,右 中序:左,根,右 后序:左,右,根
递归实现
递归实现中,总是会经过一个节点三次,所以先序中序和后序的唯一区别就是打印的时机不同
public class Node {//这是Node的结构
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public void preOdferRecur(Node head) {
if (head == null) {
return;
}
System.out.print(head.value + " ");//先序遍历,打印放在第一行
preOdferRecur(head.left);
preOdferRecur(head.right);
}
public void inOdferRecur(Node head) {
if (head == null) {
return;
}
inOdferRecur(head.left);
System.out.print(head.value + " ");//中序遍历,打印放在第二行
inOdferRecur(head.right);
}
public void posOdferRecur(Node head) {
if (head == null) {
return;
}
posOdferRecur(head.left);
posOdferRecur(head.right);
System.out.print(head.value + " ");//后序遍历,打印放在第三行
}
非递归实现
非递归先序遍历
思路:申请一个栈,压入头结点,然后弹出栈节点,打印出来,再将弹出节点的右孩子压入,左孩子压入,不断重复这个过程,直到栈为空
public void preOrderUnRecur(Node head){
if (head!=null){
Stack<Node> stack=new Stack<Node>();
stack.add(head);
while(!stack.isEmpty()){
head=stack.pop();
System.out.printf(head.value+" ");
if (head.right!=null){
stack.push(head.right);
}
if (head.left!=null){
stack.push(head.left);
}
}
}
}
非递归中序遍历
思路:中序是左,根,右,因此考虑将左边界都压入栈,直到节点为空,则从栈中拿出一个打印,当前节点右移,若当前节点不为空,则压入栈,当前节点为左
- 申请一个栈,记为stack。初始时,令变量cur=head。
- 先把cur节点压入栈,对以cur节点为头结点的子树来说,依次把左边界压入栈中,即不停地令cur=cur.left,然后重复步骤2
- 直到cur为空,此时从stack中弹出一个节点,记为node。打印node,并让cur=node.right,然后持续重复步骤2
- 当stack为空且cur为空,这个过程停止
public void inOrderUnRecur(Node head){
if(head!=null){
Stack<Node> stack=new Stack<Node>();
while (!stack.isEmpty()||head!=null){
if (head!=null){
stack.push(head);
head=head.left;
}
else {
head=stack.pop();
System.out.println(head.value+" ");
head =head.right;
}
}
}
}
非递归后序遍历
思路:后序遍历是左,右,中,先序是中,左,右,将中左右变成中右左,在建立个栈将中右左压入,弹出即是后序遍历的次序
public void posOrderUnRecur(Node head){
if (head!=null){
Stack<Node> stack1=new Stack<Node>();
Stack<Node> stack2=new Stack<Node>();
stack1.add(head);
while(!stack1.isEmpty()){
head=stack1.pop();
stack2.push(head);
if (head.left!=null){
stack1.push(head.left);
}
if (head.right!=null){
stack1.push(head.right);
}
}
while(!stack2.isEmpty()){
System.out.printf(stack2.pop().value+" ");
}
}
}