【算法分析与设计】埃氏筛素数算法

53 篇文章 15 订阅 ¥39.90 ¥99.00
该博客介绍了埃拉托斯特尼筛法(埃氏筛),一种用于查找素数的算法。算法原理是通过剔除素数倍数来找到自然数n以内的所有素数。博客内容包括素数定义、算法思想、时间复杂度分析以及Java编程实现。通过优化,如欧拉筛,可以提高算法效率。
摘要由CSDN通过智能技术生成

素数

素数也称质数,是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
最基本的质数:2, 3, 5, 7, 11, 13, 17, 19, ……

埃氏筛

埃拉托斯特尼筛法,简称埃氏筛,是一种由希腊数学家埃拉托斯特尼所提出的一种简单检定素数的算法。

要得到自然数n以内的全部素数,必须把不大于根号n的所有素数的倍数剔除,剩下的就是素数。

算法思想

给出要筛数值的范围n,找出以内的素数。

先用2去筛,即把2留下,把2的倍数剔除掉;
再用下一个质数,也就是3筛,把3留下,把3的倍数剔除掉;
接下去用下一个质数5筛,把5留下,把5的倍数剔除掉;
不断重复下去…
最终,把所有不大于根号n的所有素数的倍数剔除,剩下的就是素数。

  • 如果n是质数,那么2n, 3n, 4n, …这些n的倍数肯定都不是质数。
  • 如果选的数要多,那么要选的每个数要尽可能小。

时间复杂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值