康托展开&逆康托展开

康托展开
问题:给定的全排列,计算出它是第几个排列(求序列号)?
方法:康托展开
  对于一个长度为 n 的排列 num[1…n], 其序列号 X 为

X = a[1]* (n-i)! + a[2]* (n-2)! +…+ a[i] * (n-i)! +…+ a[n-1]*1! + a[n]*0!

其中a[i]表示在num[i+1…n]中比num[i]小的数的数量

#include<iostream>
#include<math.h>
#include<string>
#include<time.h>
#include<cstring>
using namespace std;
int factorial(int n){
	int x=1;
	for(int i=n;i>=2;i--)
		x*=i;
	return x;
}//求阶乘
int Cantor(int num[]){
	int X=0,i,j;
	for(i=1;i<=num[0];i++){//num[0]代表长度n
		int tp=0;
		for(j=i+1;j<=num[0];j++){
			//求在num[i+1..n]中比num[i]小的数的数量
			if(num[j]<num[i])
				tp++;
		}
		X+=tp*factorial(num[0]-i);
	}
	return X;
}//康托展开

逆康托定理
问题:已知X,如何去反向求解出全排列?
方法:逆康托展开
  根据 康托展开的公式,可以推出

因为 a[i] <= n-i
X = a[1]* (n-1)! + a[2]* (n-2)! +…+ a[i]* (n-i)! +…+ a[n-1]* 1! + a[n]* 0!
所以 a[i]*(n-i)! <= (n-i)(n-i)! <= (n-i+1)!

那么也就是说,如果用 X 除以 (n-1)! 得到商 c 和余数 r,其中 c 就等于 a[1], r 等于后面的部分

#include<iostream>
#include<math.h>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
const int Inf=100000;
int factorial(int n){
	int x=1;
	for(int i=n;i>=2;i--)
		x*=i;
	return x;
}//求阶乘
void inverseCantor(int num[],int n,int out[]){
	out[0]=num[0];//表示长度n
	int i,t;
	for(i=1;i<=out[0];i++){
		t=factorial(out[0]-i);
		out[i]=num[n/t+1];//求出商即是a[i]
		num[n/t+1]=Inf;
		sort(num,num+num[0]+1);
		num[0]--;
		n=n%t;
	}
}//逆康托展开
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值