康托展开
问题:给定的全排列,计算出它是第几个排列(求序列号)?
方法:康托展开
对于一个长度为 n 的排列 num[1…n], 其序列号 X 为
X = a[1]* (n-i)! + a[2]* (n-2)! +…+ a[i] * (n-i)! +…+ a[n-1]*1! + a[n]*0!
其中a[i]表示在num[i+1…n]中比num[i]小的数的数量
#include<iostream>
#include<math.h>
#include<string>
#include<time.h>
#include<cstring>
using namespace std;
int factorial(int n){
int x=1;
for(int i=n;i>=2;i--)
x*=i;
return x;
}//求阶乘
int Cantor(int num[]){
int X=0,i,j;
for(i=1;i<=num[0];i++){//num[0]代表长度n
int tp=0;
for(j=i+1;j<=num[0];j++){
//求在num[i+1..n]中比num[i]小的数的数量
if(num[j]<num[i])
tp++;
}
X+=tp*factorial(num[0]-i);
}
return X;
}//康托展开
逆康托定理
问题:已知X,如何去反向求解出全排列?
方法:逆康托展开
根据 康托展开的公式,可以推出
因为 a[i] <= n-i
X = a[1]* (n-1)! + a[2]* (n-2)! +…+ a[i]* (n-i)! +…+ a[n-1]* 1! + a[n]* 0!
所以 a[i]*(n-i)! <= (n-i)(n-i)! <= (n-i+1)!
那么也就是说,如果用 X 除以 (n-1)! 得到商 c 和余数 r,其中 c 就等于 a[1], r 等于后面的部分
#include<iostream>
#include<math.h>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
const int Inf=100000;
int factorial(int n){
int x=1;
for(int i=n;i>=2;i--)
x*=i;
return x;
}//求阶乘
void inverseCantor(int num[],int n,int out[]){
out[0]=num[0];//表示长度n
int i,t;
for(i=1;i<=out[0];i++){
t=factorial(out[0]-i);
out[i]=num[n/t+1];//求出商即是a[i]
num[n/t+1]=Inf;
sort(num,num+num[0]+1);
num[0]--;
n=n%t;
}
}//逆康托展开