欧几里德算法

本文深入探讨了C++中实现最大公约数(GCD)算法的具体细节,通过一个实际的程序示例,展示了如何使用递归和迭代两种方法来求解两个整数的最大公约数。此外,还介绍了一个基于GCD算法的游戏逻辑,通过不断减小数值并判断最大公约数是否大于当前值来决定胜负。
摘要由CSDN通过智能技术生成

当时复习一下吧= =。很久没看真的不记得了 

#include <iostream>
using namespace std;
int gcd(int a, int b)
{
    if (b==0)
    {
        
        return a;
    }
    else
    {
        int t;
        t = a;
        while (a%b != 0)
        {
            a = b;
            b = t % b;
            t = a;
        }
        return b;
    }
}
int main()
{
    int a, b, n, t = 0; int flag;
    cin >> a >> b >> n;
    while (1)
    {
        t = gcd(a, n);
        if (t > n)
        {
            flag = 1;
            cout << flag << endl; break;
        }
        n = n - t;
        t = gcd(b, n);
        if (t>n)
        {
            flag = 0;
            cout << flag << endl; break;
        }
        n = n - t;
    }


}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值