仔细想了想,为了便于思考和整理,每个文档写5篇题目比较合适,这样既方便自己查看,计数也比较便利,所以这个就是将第6题到第十题的内容写入了,继续前进吧
旋转数组的最小数字
题目描述:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。
例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
题目分析:这个题目看上去非常简单,因为只需要遍历,找到前一个数大于后一个数的时候,后面那个数就是最小值,时间复杂度N,空间复杂度1.
但是这并不是最简单最快的方法,利用二分法可以更快速的检索,时间复杂度只需要logN,空间复杂度1.
//递归写法
class Solution {
public:
int twosearch(vector<int>rotateArray, int low, int high) {
if (high == low)return rotateArray[low];
if (high - low == 1)return rotateArray[low] < rotateArray[high] ? rotateArray[low] : rotateArray[high];
int mid = (high + low) / 2;
if (rotateArray[mid] >= rotateArray[low]) {
return twosearch(rotateArray, mid, high);
}
if (rotateArray[mid] < rotateArray[low]) {
return twosearch(rotateArray, low, mid);
}
}
int minNumberInRotateArray(vector<int> rotateArray) {
int arraynum = rotateArray.size();
return twosearch(rotateArray, 0, arraynum - 1);
}
};
//非递归写法
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
int arraynum = rotateArray.size();
int i = 0; j = arraynum - 1;
int minnum;
while (1) {
if (i == j) {
minnum = rotateArray[i];
break;
}
if (j - i == 1) {
minnum= rotateArray[i] < rotateArray[j] ? rotateArray[i] : rotateArray[j];
break;
}
int mid = (i + j) / 2;
if (rotateArray[mid] >= rotateArray[i]) {
i = mid;
}
if (rotateArray[mid] < rotateArray[i]) {
j = mid;
}
}
return minnum;
}
};
斐波那契数列
题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。n<=39
题目分析:这道题属于最简单的递归入门题,但是考虑到牛客网上弱鸡的编译器能力,因此采用循环可能比较好,而且明显性能更优。
//递归写法,比较简单,而且很容易懂
class Solution {
public:
int Fibonacci(int n) {
if (n == 0)return 0;
if (n == 1)return 1;
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
};
//非递归写法,性能上会好一些
class Solution {
public:
int Fibonacci(int n) {
if (n == 0)return 0;
if (n == 1)return 1;
int output;
int pre1=0;int pre2=1; //pre1和pre2分别保存前两次的数据值
for(int i=1;i<n;i++){ //这里的重点是确定循环的次数
output=pre1+pre2;
pre1=pre2;
pre2=output;
}
return output;
}
};
跳台阶
题目描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
题目分析:这个题本身其实就是递归分析。这里用递归的思想分析。1级台阶只有一种跳法,2级别台阶有2中跳法,三级台阶则有三种跳法。这里引用了别人的分析,我觉得比我的直觉要好的多。
对于本题,前提只有 一次 1阶或者2阶的跳法。
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
e.可以发现最终得出的是一个斐波那契数列:
因此这道题就转化成了一道斐波那契数列的题,和上一题结果一致,因此我个人觉得就没有什么写的必要了,这里就不再重复写了。
变态跳台阶
题目描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
题目分析:这道题明显难度就大了很多,因为n是一个变量,所以就很难用传统的递归方法找到合适的解法。f(n) = f(n-1) + f(n-2) + f(n-3)+…+ f(2)+ f(1)。核心还是找到一个递归关系。
通过分析f(n-1) = f(n-2) + f(n-3) + f(n-4)+…+ f(2)+ f(1),两个公式相减即可得到f(n) =2* f(n-1),之后就豁然开朗了,具体写法如下图所示:
//递归写法
class Solution {
public:
int jumpFloorII(int number) {
if(number==0){return 0;}
if(number==1){return 1;}
return 2*jumpFloorII(number-1);
}
};
//非递归写法,其实就是求2的n-1次方
class Solution {
public:
int jumpFloorII(int number) {
if(number==0)return 0;
if(number==1)return 1;
int pre=1;
int output;
for(int i=1;i<number;i++){
output=2*pre;
pre=output;
}
return output;
}
};
矩形覆盖
题目描述:我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
题目分析:这个矩形比较特殊,最大宽度只有2,只能容纳一个小矩形竖排。这种题目前面的排布规律如果会影响后面的排布规律的话,一般都是通过递归分析的。仔细分析的话可以推导出具体的关系。
f(n) = f(n-1)+一个竖排 或者 f(n) = f(n-2)+两个横排,所以综合分析后:
f(n) = f(n-1) + f(n-2) ,具体解法如下:
class Solution {
public:
int rectCover(int number) {
if (number == 0) { return 0; }
if (number == 1) { return 1; }
if (number == 2) { return 2; }
int first=1,second=2,third;
for(int i=3;i<=number;i++)
{
third=first+second;
first=second;
second=third;
}
return third;
}
};