【简洁易懂】为什么判断素数时只需要循环到该数的平方根

该博客介绍了如何通过数学原理优化素数判断方法。当判断一个数x是否为素数时,只需检查1到√x之间的数是否能整除x,因为如果x有因子,必定存在一对因子,一个大于或等于√x,另一个小于或等于√x。这种优化大大减少了计算量,提高了算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先举个例子, n = 10000 , 开平方为100。
10000的每对儿因子,必定一个小于100,一个大于100。如:2和5000, 5和2000, 10和1000等。
因此,我们只需判断1-100中是否有10000的因子。 如果没有,那么大于100的数中,也不会有10000的因子。
推广到所有数中,可得结论:若要判断x是否为素数, 只需判断1-根号x中是否有它的因子即可。

懂了没~ 懂了扣666, 没懂的扣眼珠子(

在这里插入图片描述

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来老铁干了这碗代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值