自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 一文打尽目标检测NMS——精度提升篇

一文打尽目标检测NMS——精度提升篇分类优先定位优先加权平均方差加权平均自适应阈值+中心点距离总结参考文献众所周知,非极大值抑制NMS是目标检测常用的后处理算法,用于剔除冗余检测框,本文将对可以提升精度的各种NMS方法及其变体进行阶段性总结。总体概要:对NMS进行分类,大致可分为以下六种,这里是依据它们在各自论文中的核心论点进行分类,这些算法可以同时属于多种类别。分类优先:传统NMS,Soft-NMS (ICCV 2017)定位优先:IoU-Guided NMS (ECCV 2018)加权平均

2020-06-30 19:10:51 2203

原创 一文了解目标检测边界框概率分布

一文了解目标检测边界框概率分布概率建模众所周知,CNN的有监督学习通常是建立在给定训练数据集之上的,数据集的标签(也称为GT),决定了人类期望模型学习的样子。它通过损失函数、优化器等与CNN模型相连。因而机器所表现的出的一切有关识别、定位的能力,均是合理优化的结果。同样地,如何能够玩转目标检测?其实只需能够玩转最优化即可。在最近两年内,出现了一些有关目标检测bounding box概率分布建模的文章,如Softer-NMS (CVPR 2019),Gaussian YOLOv3 (ICCV 2019)

2020-06-30 18:17:54 1055 1

原创 一文打尽目标检测NMS——效率提升篇

在笔者上一篇文章《一文打尽目标检测NMS——精度提升篇》中,总结了近几年出现的一些可以提升NMS精度的方法。可以看到,NMS由于顺序处理的原因,运算效率较为低下。在笔者的实际项目中,NMS往往能占模型计算总时间的40%甚至更多,极大影响了模型的效率。经过笔者一段时间的调研,关于提升NMS运算速度的方法,在这里也将结合代码进行阶段性总结。所参考的代码库列举如下:Faster RCNN pytorch (rbg大神) 的 CUDA NMSYOLACT团队提出的Fast NMSCIoU团队提出的Clu.

2020-07-14 08:01:07 3504 7

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除