1126: 布尔矩阵的奇偶性

该程序旨在检查一个n阶方阵是否具有奇偶均势特性,即每行每列1的个数为偶数。若不具备此特性,程序会判断是否可通过修改一个元素使其具备。输出结果包括'OK'、'Change bit(i,j)'或'Corrupt'。" 117446795,5769462,Flutter时间管理:DateUtils类,"['Flutter开发', '前端开发', '编程技巧']
摘要由CSDN通过智能技术生成

题目描述

一个布尔方阵具有奇偶均势特性,当且仅当 每行、每列总和为偶数,即包含偶数个1。如下面这个4*4的矩阵就具有奇偶均势特性:
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1
编写程序,读入一个n阶方阵并检查它是否具有奇偶均势特性。如果没有,你的程序应当再检查一下它是否可以通过修改一位(把0改为1,把1改为0)来使它具有奇偶均势特性;如果不可能,这个矩阵就被认为是破坏了。
 

输入

第一行是一个整数n ( 0< n < 100 ),代表该方阵的阶数。然后输入n 行,每行n个整数(0或1)。

输出

如果矩阵是布尔矩阵,输出“OK”;如果能通过只修改该矩阵中的一位来使它成为布尔矩阵,则输出“Change bit(i,j)”,这里i和j是被修改的元素的行与列(行,列号从0开始);否则,输出“Corrupt”。

样例输入 Copy

4
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1

样例输出 Copy

OK
#include <stdio.h>
#include <stdlib.h>
#define N 100
int main()
{
    int a[N][N];
    int i,j;
    int even=0;//表示偶数
    int odd=0;//表示奇数
    int sum,h,l,n;
    h=l=i=j=0;//sum表示数组元素的和;h,l的值分别表示不具有奇偶均势特性的行和列
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
        for(j=0;j<n;j++)
            scanf("%d",&a[i][j]);
    }
    //对每一行进行判断
    for(i=0;i<n;i++)
    {
        sum=0;//每计算完一行再使sum=0,不然结果影响下一行
        for(j=0;j<n;j++)
            sum+=a[i][j];
        if(sum%2!=0)//如果每一行的值不为偶数
        {
            even++;//记录这样的行的个数
            h=i;//记录该行的位置
        }
    }
    //对每一列进行判断
    for(j=0;j<n;j++)
    {
        sum=0;//每计算完一列再使sum=0;不然结果影响下一列
        for(i=0;i<n;i++)
            sum+=a[i][j];//求出每一列的值
        if(sum%2!=0)//如果每一列的值不为偶数
        {
            odd++;//记录这样的列的个数
            l=j;//记录该列的位置
        }
    }
    if(even==0 && odd==0)
        printf("OK");
    else if(even==1 && odd==1)//只有当这样(行和列的值不为偶数)的行和列的数量都为1时才可以只修改一位
        printf("Change bit(%d,%d)",h,l);
    else
        printf("Corrupt");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值