OnlyPersistVictory DayOne

A

题意:
给定一个区间 [ L , R ] [L,R] [L,R],问这个区间内相邻差最小和最大的质数对。
数据范围: 1 ≤ L < R ≤ 2147483647 , R − L ≤ 1 0 6 1\leq L<R\leq 2147483647,R-L\leq10^6 1L<R2147483647,RL106

题解:

  • 考虑 1 ≤ L < R ≤ 2147483647 1\leq L<R\leq 2147483647 1L<R2147483647,那么必然不能进行直接的线性筛。
    但可以知道的是 R R R以内的所有合数的质因子不会超过 R \sqrt{R} R

  • 考虑区间范围为 1 0 6 10^6 106,一个比较直观的想法是先预处理 R \sqrt{R} R 内的所以质数,
    然后用这些质数来筛掉区间 [ L , R ] [L,R] [L,R]的所有合数。最后就可以得到 [ L , R ] [L,R] [L,R]内的所有质数,进行相邻比较即可。

  • 回忆一下埃筛进行筛质数的操作。
    对每个已经确定的质数 p r i m e prime prime,从 i = 2 × p r i m e i=2\times prime i=2×prime开始, i i i p r i m e prime prime开始递增,将 i i i所有小于等于 n n n且遍历到的数都打上合数标记。埃氏筛法通过级数可证时间复杂度为: O ( n log ⁡ log ⁡ n ) O(n\log \log n) O(nloglogn)
    本题可以通过埃筛的思想,从 2 ∗ p r i m e 2*prime 2prime处开始将 [ L , R ] [L,R] [L,R]之间所有的数打上合数标记。
    为了保证所有筛的位置都在 [ L , R ] [L,R] [L,R]之间,
    所有 i i i的初始为 m a x ( ( L + p r i m e − 1 ) / p r i m e ∗ p r i m e , 2 × p r i m e ) max((L+prime-1)/prime * prime,2\times prime) max((L+prime1)/primeprime,2×prime)

  • 到此本题即可通过。

#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;

typedef long long ll;

ll L, R;
const int N = 1e6 + 10;
int pri[N], cnt = 0;
bool st[N];
void xs(int n) {
	st[0] = st[1] = true;
	for(int i = 2; i <= n; ++i) {
		if(!st[i]) pri[++cnt] = i;
		for(int j = 1; j <= cnt && i <= n / pri[j]; ++j) {
			st[i * pri[j]] = true;
			if(i % pri[j] == 0) break;
		} 
	}	
}

int p[N], act;
int ST[N];
void solve() {
	act = 0;
	int r = sqrt(R);
	for(int j = 1; j <= cnt && pri[j] <= r; ++j) {
		ll c = (L + pri[j] - 1) / pri[j];
		while(c < 2) ++c;
		ll fir = c * pri[j];
		for(ll i = fir; i <= R; i += pri[j]) ST[i - L] = 1;
	}
	
	for(int i = 0; i <= R - L; ++i) {
		if(ST[i]) continue;
		if(i + L < N && st[i + L]) continue;
		p[++act] = i + L;
	}
	
	if(act < 2) puts("There are no adjacent primes.");
	else {
		int mx = 2, mn = 2;
		for(int i = 3; i <= act; ++i) {
			if(p[mx] - p[mx - 1] < p[i] - p[i - 1]) mx = i;
			if(p[mn] - p[mn - 1] > p[i] - p[i - 1]) mn = i;
		}
		printf("%d,%d are closest, %d,%d are most distant.\n", p[mn - 1], p[mn], p[mx - 1], p[mx]);
	}
	
	for(int i = 0; i <= R - L; ++i) ST[i] = 0;
}

int main()
{
	xs(N - 1);
	while(~scanf("%lld%lld", &L, &R)) solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值