【带限制的完全背包】Educational Codeforces Round 133 (Rated for Div. 2) D. Chip Move

题意:
给定 n n n k k k,初始步长为 k k k ,每次可以走 k k k 的倍数次步,下一次走 ( k + 1 ) (k+1) (k+1)的倍数次步,以此类推,问从 0 0 0 开始到达 [ 1 , n ] [1,n] [1,n] 每个点的方案数。

题解:
当每次只走一倍的步数时, ( s t e p + k ) × ( s t e p − k + 1 ) 2 ≤ n \frac{(step+k)\times (step-k+1)}{2}\leq n 2(step+k)×(stepk+1)n,所以最多只会走 O ( n ) O(\sqrt{n}) O(n )次。

问题转换为带限制的完全背包问题,走第 i i i 次前,必须已经走了 1 1 1 i − 1 i-1 i1

f [ i ] [ j ] f[i][j] f[i][j] 表示走了 i i i次,第 i i i 次走完后到达点 j j j 的方案数
i i i 次走的步数为 ( k + i − 1 ) (k+i-1) (k+i1) 的倍数

不带限制的完全背包的模板为:

for (int i = 1; i <= n; ++i) f[i] = 0;
f[0] = 1;

for (int step = k; (start = (step + k) * (step - k + 1) / 2) <= n; ++step)
	for (int j = 0; j <= n; ++j)
		if (j >= step) f[i][j] += f[i - 1][j - step];

但是本题的限制为:走第 i i i 次前,必须已经走了 1 1 1 i − 1 i-1 i1
每次需要强制走一下第 i − 1 i-1 i1 次,如下:

for (int i = 1; i <= n; ++i) f[0][i] = 0;
f[0][0] = 1;
for (int step = k; (step + k) * (step - k + 1) / 2 <= n; ++step) {
	for (int j = 0; j <= n; ++j)
		if (j >= step) f[i][j] = f[i - 1][j - step];
		else f[i][j] = 0;
	for (int j = 0; j <= n; ++j)
		if (j >= step) f[i][j] += f[i - 1][j - step];
	for (int j = 1; j <= n; ++j) ans[j] += f[j];
}

滚动数组优化一下:

for (int i = 1; i <= n; ++i) f[i] = 0;
f[0] = 1;

for (int step = k; (step + k) * (step - k + 1) / 2 <= n; ++step) {
	for (int j = n; j >= 0; --j)
		if (j >= step) f[j] = f[j - step];
		else f[j] = 0;
		
	for (int j = 0; j <= n; ++j)
		if (j >= step) f[j] += f[j - step];
	for (int j = 1; j <= n; ++j) ans[j] += f[j];
}

代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

const int N = 200010;
const int mod = 998244353;

int dp[2][N];
int f[N];
int ans[N];
int n, k;

void add(int& a, int b) {
	a += b;
	if (a >= mod) a -= mod;
}

void solve() {
	scanf("%d%d", &n, &k);
	for (int i = 1; i <= n; ++i) f[i] = 0;
	f[0] = 1;
	
	for (int step = k, start; (start = (step + k) * (step - k + 1) / 2) <= n; ++step) {
		for (int j = n; j >= 0; --j)
			if (j >= start) f[j] = f[j - step];
			else f[j] = 0;
			
		for (int j = start; j <= n; ++j)
			if (j >= start) add(f[j], f[j - step]);
		for (int j = 1; j <= n; ++j) add(ans[j], f[j]);
	}
	for (int i = 1; i <= n; ++i) printf("%d%c", ans[i], " \n"[i == n]); 
}

int main()
{
	int T = 1;
//	scanf("%d", &T);
	for (int i = 1; i <= T; ++i) {
		solve();
	}
	return 0;
}

总结:
避免跳跃性思考,从朴素的二维状态构建好转移方程后,再根据实际优化空间和时间

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值