Complete Tripartite
You have a simple undirected graph consisting of n vertices and m edges. The graph doesn’t contain self-loops, there is at most one edge between a pair of vertices. The given graph can be disconnected.
Let’s make a definition.
Let v1 and v2 be two some nonempty subsets of vertices that do not intersect. Let f(v1,v2) be true if and only if all the conditions are satisfied:
- There are no edges with both endpoints in vertex set v1.
- There are no edges with both endpoints in vertex set v2.
- For every two vertices x and y such that x is in v1 and y is in v2, there is an edge between x and y.
Create three vertex sets (v1, v2, v3) which satisfy the conditions below;
- All vertex sets should not be empty.
- Each vertex should be assigned to only one vertex set.
- f(v1,v2), f(v2,v3), f(v3,v1) are all true.
Is it possible to create such three vertex sets? If it’s possible, print matching vertex set for each vertex.
Input
The first line contains two integers nn and mm (3≤n≤10 ^5,0≤m≤min(3⋅10 ^5,n(n−1)/2))— the number of vertices and edges in the graph.
The i-th of the next mm lines contains two integers ai and bi (1≤ai<bi≤n) — it means there is an edge between ai and bi. The graph doesn’t contain self-loops, there is at most one edge between a pair of vertices. The given graph can be disconnected.
Output
If the answer exists, print n integers. i-th integer means the vertex set number (from 1 to 3) of i-th vertex. Otherwise, print −1.
If there are multiple answers, print any.
Examples
input
6 11
1 2
1 3
1 4
1 5
1 6
2 4
2 5
2 6
3 4
3 5
3 6
output
1 2 2 3 3 3
input
4 6
1 2
1 3
1 4
2 3
2 4
3 4
output
-1
Note
In the first example, if v1={1}, v2={2,3}, and v3={4,5,6} then vertex sets will satisfy all conditions. But you can assign vertices to vertex sets in a different way; Other answers like “2 3 3 1 1 1” will be accepted as well.
In the second example, it’s impossible to make such vertex sets.
思路:
题目意思很简单,三分图嘛,我们要将点分成三个集合,然后每个集合满足条件嘛
这里我们先通过两个点就可以初步划分出三个集合,然后判断一下条件:
1.每个点相连的边数时候符合要求
2.每个点连的边是否为自身集合的边
3.每个集合的数量不为0
代码如下:
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int mx=1e5+10;
vector<int>s[mx]; //这个用来存边
int vis[mx]; //这个用来标记
int main(