Complete Tripartite

这篇博客讨论了一种简单无向图的问题,目标是将其分为三个满足特定条件的顶点集。条件包括:各集合内部无边,集合间两两之间全连接。博客提供了输入输出示例,并解释了如何检查和构造满足条件的顶点集。给出的解决方案涉及检查边的连接性和集合的正确性。
摘要由CSDN通过智能技术生成

Complete Tripartite

You have a simple undirected graph consisting of n vertices and m edges. The graph doesn’t contain self-loops, there is at most one edge between a pair of vertices. The given graph can be disconnected.

Let’s make a definition.

Let v1 and v2 be two some nonempty subsets of vertices that do not intersect. Let f(v1,v2) be true if and only if all the conditions are satisfied:

  1. There are no edges with both endpoints in vertex set v1.
  2. There are no edges with both endpoints in vertex set v2.
  3. For every two vertices x and y such that x is in v1 and y is in v2, there is an edge between x and y.

Create three vertex sets (v1, v2, v3) which satisfy the conditions below;

  1. All vertex sets should not be empty.
  2. Each vertex should be assigned to only one vertex set.
  3. f(v1,v2), f(v2,v3), f(v3,v1) are all true.

Is it possible to create such three vertex sets? If it’s possible, print matching vertex set for each vertex.

Input
The first line contains two integers nn and mm (3≤n≤10 ^5,0≤m≤min(3⋅10 ^5,n(n−1)/2))— the number of vertices and edges in the graph.

The i-th of the next mm lines contains two integers ai and bi (1≤ai<bi≤n) — it means there is an edge between ai and bi. The graph doesn’t contain self-loops, there is at most one edge between a pair of vertices. The given graph can be disconnected.

Output
If the answer exists, print n integers. i-th integer means the vertex set number (from 1 to 3) of i-th vertex. Otherwise, print −1.

If there are multiple answers, print any.

Examples
input
6 11
1 2
1 3
1 4
1 5
1 6
2 4
2 5
2 6
3 4
3 5
3 6
output
1 2 2 3 3 3

input
4 6
1 2
1 3
1 4
2 3
2 4
3 4
output
-1

Note
In the first example, if v1={1}, v2={2,3}, and v3={4,5,6} then vertex sets will satisfy all conditions. But you can assign vertices to vertex sets in a different way; Other answers like “2 3 3 1 1 1” will be accepted as well.

在这里插入图片描述
In the second example, it’s impossible to make such vertex sets.

思路
题目意思很简单,三分图嘛,我们要将点分成三个集合,然后每个集合满足条件嘛
这里我们先通过两个点就可以初步划分出三个集合,然后判断一下条件:
1.每个点相连的边数时候符合要求
2.每个点连的边是否为自身集合的边
3.每个集合的数量不为0

代码如下:

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int mx=1e5+10;
 
vector<int>s[mx]; //这个用来存边
int vis[mx];  //这个用来标记
 
int main(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值