452. 用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 x s t a r t , x e n d x_{start},x_{end} xstart,xend, 且满足 x s t a r t ≤ x ≤ x e n d x_{start} ≤ x ≤ x_{end} xstart≤x≤xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 p o i n t s [ i ] = [ x s t a r t , x e n d ] points [i] = [x_{start},x_{end}] points[i]=[xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
Example
input |
---|
points = [[10,16],[2,8],[1,6],[7,12]] |
output |
2 |
input |
---|
points = [[1,2],[3,4],[5,6],[7,8]] |
output |
4 |
input |
---|
points = [[1,2],[2,3],[3,4],[4,5]] |
output |
2 |
Note
- 对于第一个样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
- 0 ≤ p o i n t s . l e n g t h ≤ 1 0 4 0 ≤ points.length ≤ 10^4 0≤points.length≤104
- p o i n t s [ i ] . l e n g t h = = 2 points[i].length == 2 points[i].length==2
- − 2 31 ≤ x s t a r t < x e n d ≤ 2 31 − 1 -2^{31} ≤ x_{start} < x_{end} ≤ 2^{31} - 1 −231≤xstart<xend≤231−1
思路
- 按照题目意思,一个箭一次可以射穿多个气球,但是射穿一段遇到空气后不能再射穿
- 所以尽可能的找气球重叠的地方
- 按照气球的起始位置排序,并且相同起始位置的,结束位置小的优先排在前面
- 接下来贪心处理,每次更新位置即可(见代码会明白的)
代码如下:
class Solution {
public:
int findMinArrowShots(vector<vector<int>>& points) {
if(points.size() == 0)
return 0;
sort(points.begin(), points.end(), [](vector<int> &a,
vector<int> &b){
if(a[0] != b[0])
return a[0] < b[0];
else
return a[1] < b[1];
});
int l = points.size(), ans = 1, m = points[0][1];
for(int i = 1; i < l; i++)
{
if(points[i][0] > m)
{
ans++;
m = points[i][1];
}
else
m = min(m, points[i][1]);
}
return ans;
}
};