代码随想录算法训练营第42天| 198.打家劫舍、213.打家劫舍II 337.打家劫舍III、 337.打家劫舍III

198.打家劫舍

在这里插入图片描述

题目链接:198.打家劫舍
文档讲解:代码随想录
状态:不会

记忆化搜索思路:
可以从最后一间房子开始,每次面对一个房子要考虑打劫还是不打劫,如果打劫了就从它的下下个房子开始打劫,在这个过程中打劫还是不打劫可以组成一个二叉树。如图,val是索引
在这里插入图片描述
在这里插入图片描述
然后这个过程中可以使用记忆化搜索来记录已经算过的值,从而实现剪枝。

动态规划思路:
和上面的想法类似,决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房。

递推公式:dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

不同题解:

    //记忆化搜索
    public int rob0(int[] nums) {
        int n = nums.length;
        int[] memo = new int[n];
        Arrays.fill(memo, -1);
        return dfs(nums, memo, n - 1); // 从最后一个房子开始思考,选和不选可以组成一个二叉树,利用记忆化搜索对二叉树剪枝
    }

    public int dfs(int[] nums, int[] memo, int i) {
        if (i < 0) {
            return 0;
        }
        if (memo[i] != -1)
            return memo[i];
        memo[i] = Math.max(dfs(nums, memo, i - 1), dfs(nums, memo, i - 2) + nums[i]);
        return memo[i];
    }

    //动态规划
    public int rob1(int[] nums) {
        if (nums == null || nums.length == 0) return 0;
        if (nums.length == 1) return nums[0];

        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        dp[1] = Math.max(dp[0], nums[1]);
        for (int i = 2; i < nums.length; i++) {
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
        }

        return dp[nums.length - 1];
    }

    //优化空间
    public int rob2(int[] nums) {
        // 如果数组长度为1,直接返回唯一的元素
        if (nums.length == 1) {
            return nums[0];
        }

        // 初始化dpPrev为第一个房子的金额
        int dpPrev = nums[0];
        // 初始化dpCurr为前两个房子中较大的金额
        int dpCurr = Math.max(nums[1], nums[0]);
        // 初始化res用于存储计算中的临时最大值
        int res = 0;

        // 从第三个房子开始遍历数组
        for (int i = 2; i < nums.length; i++) {
            // 计算当前位置的最大金额,要么是当前房子不抢(dpCurr),
            // 要么是抢当前房子以及前一个不相邻的房子的金额(dpPrev + nums[i])
            res = Math.max(dpCurr, dpPrev + nums[i]);
            // 更新dpPrev为dpCurr的值
            dpPrev = dpCurr;
            // 更新dpCurr为当前计算出的最大值
            dpCurr = res;
        }

        // 返回最后计算出的最大金额
        return dpCurr;
    }

213.打家劫舍II

在这里插入图片描述

题目链接:213.打家劫舍II
文档讲解:代码随想录
状态:不会

思路:连成环之后就导致了第一个和最后一个房间最多只能同时打劫一次,其他位置就没有影响了。所以可以将环拆成两个队列,如图所示:
在这里插入图片描述
在这里插入图片描述
剩下的和198.打家劫舍 就是一样的了。

题解:

    public int rob(int[] nums) {
        if (nums.length == 1) {
            return nums[0];
        }
        int res1 = robby(Arrays.copyOfRange(nums, 0, nums.length - 1));
        int res2 = robby(Arrays.copyOfRange(nums, 1, nums.length));
        return Math.max(res2, res1);
    }


    public int robby(int[] nums) {
        if (nums.length == 1) {
            return nums[0];
        }
        int pre2 = nums[0];
        int pre1 = Math.max(nums[0], nums[1]);
        for (int i = 2; i < nums.length; i++) {
            int cur = Math.max(pre1, pre2 + nums[i]);
            pre2 = pre1;
            pre1 = cur;
        }
        return pre1;
    }

337.打家劫舍III

在这里插入图片描述
在这里插入图片描述

题目链接:337.打家劫舍III
文档讲解:代码随想录
状态:不会

思路:
对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。
本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。

如果还是利用考虑i-1和考虑i-2的思路的话,就需要考虑儿子节点和儿子的儿子节点,但是这样最多需要考虑四个节点的情况,所以可以将选和不选该节点的最大和作为返回值,这样就不要考虑儿子的儿子了。
在这里插入图片描述
在这里插入图片描述
题解:

  // 在二叉树中可以偷窃的最大金额
    public int rob(TreeNode root) {
        // 调用深度优先搜索函数获取结果数组
        int[] res = dfs(root);
        // 返回可以偷窃的最大金额,即res[0]和res[1]中的最大值
        return Math.max(res[0], res[1]);
    }

    // 深度优先搜索函数,后序遍历,返回一个数组,数组的两个元素分别表示
    // res[0]: 偷当前节点的最大金额
    // res[1]: 不偷当前节点的最大金额
    public int[] dfs(TreeNode root) {
        // 如果当前节点为空,返回{0, 0}
        if (root == null) {
            return new int[]{0, 0};
        }
        // 递归计算左子树的结果
        int[] left = dfs(root.left);
        // 递归计算右子树的结果
        int[] right = dfs(root.right);
        // 计算偷当前节点的最大金额
        // 等于左子树不偷的最大金额 + 右子树不偷的最大金额 + 当前节点的值
        int rob = left[1] + right[1] + root.val;
        // 计算不偷当前节点的最大金额
        // 等于左子树和右子树的最大金额(不管偷还是不偷)
        int notRob = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        // 返回当前节点的结果数组
        return new int[]{rob, notRob};
    }
代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值