一、三者的共性
1)RDD、DataFrame、DataSet全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利;
2)三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算;
3)三者有许多共同的函数,如filter,排序等;
4)在对DataFrame和Dataset进行操作许多操作都需要这个包:import spark.implicits._(在创建好SparkSession对象后尽量直接导入)
5)三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
6)三者都有partition的概念 7)DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型
二、三者的区别
1)RDD
RDD一般和Spark MLib同时使用
RDD不支SparkSQL操作
2)DataFrame
与RDD和Dataset不同,DataFrame每一行的类型固定为Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值
DataFrame与DataSet一般不与 Spark MLib 同时使用
DataFrame与DataSet均支持 SparkSQL 的操作,比如select,groupby之类,还能注册临时表/视窗,进行 sql 语句操作
DataFrame与DataSet支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然
3)DataSet
Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。DataFrame其实就是DataSet的一个特例
type DataFrame = Dataset[Row]
DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段。而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息