单调栈解决 Next Greater Number 一类问题

给定两个没有重复元素的数组 nums1 和 nums2 ,其中nums1 是 nums2 的子集。找到 nums1 中每个元素在 nums2 中的下一个比其大的值。 nums1 中数字 x 的下一个更大元素是指 x 在 nums2 中对应位置的右边的第一个比 x大的元素。如果不存在,对应位置输出-1。
示例 1:
输入: nums1 = [4,1,2], nums2 = [1,3,4,2]. 输出: [-1,3,-1] 解释:
对于num1中的数字4,你无法在第二个数组中找到下一个更大的数字,因此输出 -1。
对于num1中的数字1,第二个数组中数字1右边的下一个较大数字是 3。
对于num1中的数字2,第二个数组中没有下一个更大的数字,因此输出 -1

解题思路:

这道题的暴力解法很好想到,就是对每个元素后面都进行扫描,找到第一个更大的元素就行了。但是暴力解法的时间复杂度是 O(n^2)。
另一个解题思路是我们可以忽略数组 nums1,先对将 nums2 中的每一个元素,求出其下一个更大的元素。随后对于将这些答案放入哈希映射(HashMap)中,再遍历数组 nums1,并直接找出答案。对于 nums2,我们可以使用单调栈来解决这个问题。

单调栈
单调栈实际上就是栈,只是利用了一些巧妙的逻辑,使得每次新元素入栈后,栈内的元素都保持有序(单调递增或单调递减)。

听起来有点像堆(heap)?不是的,单调栈用途不太广泛,只处理一种典型的问题,叫做 Next Greater Element。本文用讲解单调队列的算法模版解决这类问题。

这个问题可以这样抽象思考:把数组的元素想象成并列站立的人,元素大小想象成人的身高。这些人面对你站成一列,如何求元素「2」的 Next Greater Number 呢?很简单,如果能够看到元素「2」,那么他后面可见的第一个人就是「2」的 Next Greater Number,因为比「2」小的元素身高不够,都被「2」挡住了,第一个露出来的就是答案。
在这里插入图片描述

这个情景很好理解吧?带着这个抽象的情景,先来看下代码。

vector<int> nextGreaterElement(vector<int>& nums) {
    vector<int> ans(nums.size()); // 存放答案的数组
    stack<int> s;
    for (int i = nums.size() - 1; i >= 0; i--) { // 倒着往栈里放
        while (!s.empty() && s.top() <= nums[i]) { // 判定个子高矮
            s.pop(); // 矮个起开,反正也被挡着了。。。
        }
        ans[i] = s.empty() ? -1 : s.top(); // 这个元素身后的第一个高个
        s.push(nums[i]); // 进队,接受之后的身高判定吧!
    }
    return ans;
}

这就是单调队列解决问题的模板。for 循环要从后往前扫描元素,因为我们借助的是栈的结构,倒着入栈,其实是正着出栈。while 循环是把两个“高个”元素之间的元素排除,因为他们的存在没有意义,前面挡着个“更高”的元素,所以他们不可能被作为后续进来的元素的 Next Great Number 了。

这个算法的时间复杂度不是那么直观,如果你看到 for 循环嵌套 while 循环,可能认为这个算法的复杂度也是 O(n^2),但是实际上这个算法的复杂度只有 O(n)。

分析它的时间复杂度,要从整体来看:总共有 n 个元素,每个元素都被 push 入栈了一次,而最多会被 pop 一次,没有任何冗余操作。所以总的计算规模是和元素规模 n 成正比的,也就是 O(n) 的复杂度。

使用单调栈解决该题

class Solution {
    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        Stack<Integer> stack= new Stack<>();
        HashMap<Integer, Integer> map = new HashMap<>();
        for(int i = nums2.length-1; i>=0; i--){
            while (!stack.isEmpty()&&nums2[i]>=stack.peek()){
                stack.pop();
            }
            if(stack.isEmpty()){
                map.put(nums2[i],-1);
            }else {
                map.put(nums2[i],stack.peek());
            }
            stack.push(nums2[i]);
        }
        for(int i =0; i<nums1.length; i++){
            nums1[i] = map.get(nums1[i]);
        }
        return nums1;
    }
}

单调队列解决问题的模板。for 循环要从后往前扫描元素,因为我们借助的是栈的结构,倒着入栈,其实是正着出栈。while 循环是把两个“高个”元素之间的元素排除,因为他们的存在没有意义,前面挡着个“更高”的元素,所以他们不可能被作为后续进来的元素的 Next Great Number 了。

时间复杂度
这个算法的时间复杂度不是那么直观,如果你看到 for 循环嵌套 while 循环,可能认为这个算法的复杂度也是 O(n^2),但是实际上这个算法的复杂度只有 O(n)。

分析它的时间复杂度,要从整体来看:总共有 n 个元素,每个元素都被 push 入栈了一次,而最多会被 pop 一次,没有任何冗余操作。所以总的计算规模是和元素规模 n 成正比的,也就是 O(n) 的复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值