略谈基本计数原理和排列组合


基本计数原理

加法原理

分类相加

例:

Mr.bean有n1,n2,n3…nx种方法从伦敦到利物浦,则总方法数为sum{n1,n2,n3,……,nx}

乘法原理

分步相乘

例:

Mr.bean 从伦敦到利物浦要经过牛津,剑桥,诺丁汉,而且从伦敦到牛津有4种方法,牛津到剑桥有5种方法,剑桥到诺丁汉有10种方法,诺丁汉到利物浦有11种方法,

因此Mr.bean共有 4 × 5 × 10 × 11 = 2200 4\times5\times10\times11=2200 4×5×10×11=2200种方法到达利物浦 可真为难他了


排列

将m个人中叫出n个人来排成一列,则共有 m ∗ ( m − 1 ) ∗ ( m − 2 ) . . . . ∗ ( m − n + 1 ) m*(m-1)*(m-2)....*(m-n+1) m(m1)(m2)....(mn+1)种排列方式,若用 P m n P_{m}^{n} Pmn来表示上述情况,则有

P m n P_{m}^{n} Pmn= m ! ( m − n ) ! \frac{m!}{(m-n)!} (mn)!m!(部分排列)

故可知, P m m P_{m}^{m} Pmm= m ! ( m − m ) ! = m ! \frac{m!}{(m-m)!}=m! (mm)!m!=m!(全排列)

当然,若从m个人中叫出n个人来围成一圈,并从任意一点将这个圈断开变成不同的队列,这种东西我们把他叫做圆排列,用 Q m n Q_{m}^{n} Qmn来表示

这样的话, Q m n Q_{m}^{n} Qmn= P m n n \frac{P_{m}^{n}}{n} nPmn= m ! ( m − n ) ! n \frac{\frac{m!}{(m-n)!}}{n} n(mn)!m!= m ! n × ( m − n ) ! \frac{m!}{n\times(m-n)!} n×(mn)!m!(圆排列)

因为对于每个圈都可以从不同的点断开扩展为n个不同的队列

当然,由上可知, Q m m Q_{m}^{m} Qmm= P m m m \frac{P_{m}^{m}}{m} mPmm= m ! m \frac{m!}{m} mm!= ( m − 1 ) ! (m-1)! (m1)!

组合

m个人中叫n个出来,不排队凑成一团,不在乎顺序,这叫组合,用 C m n C_{m}^{n} Cmn表示

想想 C m n C_{m}^{n} Cmn怎么求?

若在人群中,ABC和ACB和BCA等都是一样的,故对于 C m n C_{m}^{n} Cmn中的每一种情况,都可以再扩展 n ! n! n!倍(比如n=3,则对于 C m n C_{m}^{n} Cmn中的ABC来说,就可以扩展为ABC,ABC,BCA,BAC,CBA,CAB六种,刚好是3!),即 C m n C_{m}^{n} Cmn P m n P_{m}^{n} Pmn少了 n ! n! n!倍!

因此, C m n = P m n n ! C_{m}^{n} = \frac{P_{m}^{n}}{n!} Cmn=n!Pmn

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AndrewMe8211

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值