
算法八股知识点记录
c. 利用增量训练的思想(Boosting):使用全部的样本作为训练集,得到分类器L1,从L1正确分类的样本中和错误分类的样本中各抽取50%的数据,即循环的一边采样一个。b. 利用模型融合的方法(Ensemble):对数据丰富的类多次下采样(放回采样,这样产生的训练集才相互独立)产生多个不同的训练集,进而训练多个不同的分类器,通过组合多个分类器的结果得到最终的结果。boosting重采样的不是样本,而是样本的分布,每次迭代之后,样本的分布会发生变化,也就是被分错的样本会更多的出现在下一次训练集中。








