[最小不相交路径覆盖]模版

题目描述

一个不含圈的有向图G中,G的一个路径覆盖是一个其结点不相交的路径集合P,图中的每一个结点仅包含于P中的某一条路径。路径可以从任意结点开始和结束,且长度也为任意值,包括0。请你求任意一个不含圈的有向图G的最小路径覆盖数。

输入输出格式

输入格式

t 表示有t组数据;n 表示n个顶点(n<=120);m 表示有m条边; 接下来m行,每行有两个数 i,j表示一条有向边。

输出格式

最小路径覆盖数

输入输出样例

输入样例#1:

2
4
3
3 4
1 3
2 3
3
3
1 3
1 2
2 3

输出样例#1:

2
1

题目解析

把原图的每个点V拆成Vx和Vy两个点,如果有一条有向边A->B,那么就加边Ax−>By。这样就得到了一个二分图。
那么最小路径覆盖=原图的结点数-新图的最大匹配数。

代码

#include<iostream>
#include<vector>
#include<cstring>
using namespace std;
int t,n,m,u,v,link[125],ans;
vector<int> a[125];
bool flag[125];
bool find(int x)
{
	for(int i=0;i<a[x].size();i++)
	 if(!flag[a[x][i]])
	 {
	   int j=a[x][i];
	   flag[j]=1;
	   int q=link[j];
	   link[j]=x;
	   if(!q||find(q)) return true;
	   link[j]=q;
	 }
	return false;
}//最大匹配
int main()
{
	cin>>t;
	while(t>0)
	{
	  t--;
	  cin>>n>>m;
	  for(int i=1;i<=n;i++)
	   a[i].clear();
	  memset(link,0,sizeof(link));
	  ans=0;//初始化
	  for(int i=1;i<=m;i++)
	  {
	  	cin>>u>>v;
	  	a[u].push_back(v);
	  }
	  for(int i=1;i<=n;i++)
	  {
	  	memset(flag,0,sizeof(flag));
	  	ans+=find(i);
	  }
	  cout<<n-ans<<endl;//最小路径覆盖=原图的结点数-新图的最大匹配数
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值