[Jzoj] 1243. TreeCount

题目大意

给出一个有 N ( 2 &lt; = N &lt; = 1000 ) N(2&lt;=N&lt;=1000) N(2<=N<=1000)个顶点 M ( N − 1 &lt; = M &lt; = N ∗ ( N − 1 ) / 2 ) M(N-1&lt;=M&lt;=N*(N-1)/2) M(N1<=M<=N(N1)/2)条边的无向连通图。设 d i s t 1 [ i ] dist1[i] dist1[i]表示在这个无向连通图中,顶点 i i i到顶点 1 1 1的最短距离。
现在要求你在这个图中删除 M − ( N − 1 ) M-(N-1) M(N1)条边,使得这个图变成一棵树。设 d i s t 2 [ i ] dist2[i] dist2[i]表示在这棵树中,顶点 i i i到顶点 1 1 1的距离。
你的任务是求出有多少种删除方案,使得对于任意的 i i i,满足 d i s t 1 [ i ] = d i s t 2 [ i ] dist1[i]=dist2[i] dist1[i]=dist2[i]

题目解析

如果点 1 1 1到点 i i i的最短路大于点 j j j,且 i i i j j j的路径有可能出现在最短路上(即 d i s [ i ] = d i s [ j ] + l e n [ i ] [ j ] dis[i]=dis[j]+len[i][j] dis[i]=dis[j]+len[i][j]),那 i i i点的方案数 + 1 +1 +1
最后把所有点的方案数乘起来就是答案,注意开 l o n g long long l o n g long long
也就是求点 1 1 1到其他点的最路径条数相乘。

代码

#include<bits/stdc++.h>
using namespace std;
int n,m;
int dis[1005],t[1005];
queue<int> q;
bool vis[1005];

int ls[1005],cnt;
struct edge{int v,w,next;}e[1000005];
void ins(int x,int y,int w){e[++cnt].v=y;e[cnt].w=w;e[cnt].next=ls[x];ls[x]=cnt;}

int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1,u,v,w;i<=m;i++)
	{
	  scanf("%d%d%d",&u,&v,&w);
	  ins(u,v,w);ins(v,u,w);
	}
	memset(dis,0x3f,sizeof(dis));
	dis[1]=0;q.push(1);int x,y;
	while(!q.empty())
	{
	  x=q.front();q.pop();vis[x]=0;
	  for(int i=ls[x];i;i=e[i].next)
	  {
	  	y=e[i].v;
	  	if(dis[x]+e[i].w<dis[y])
	  	{
	  	  dis[y]=dis[x]+e[i].w;
	  	  t[y]=1;
	  	  if(!vis[y])
	  	  {
	  	  	vis[y]=1;
	  	  	q.push(y);
		  }
		}
		else if(dis[x]+e[i].w==dis[y])
		 t[y]++;
	  }
	}
	long long ans=1;
	for(int i=2;i<=n;i++) (ans*=t[i])%=2147483647;
	cout<<ans%2147483647;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值