来源:第四届蓝桥杯省赛C++B组
算法标签:斐波拉契,高精度
题目描述:
标题:黄金连分数
黄金分割数0.61803… 是个无理数,这个常数十分重要,在许多工程问题中会出现。有时需要把这个数字求得很精确。
对于某些精密工程,常数的精度很重要。也许你听说过哈勃太空望远镜,它首次升空后就发现了一处人工加工错误,对那样一个庞然大物,其实只是镜面加工时有比头发丝还细许多倍的一处错误而已,却使它成了“近视眼”!!
言归正传,我们如何求得黄金分割数的尽可能精确的值呢?有许多方法。
比较简单的一种是用连分数:
1 黄金数 = --------------------- 1 1 + ----------------- 1 1 + ------------- 1 1 + --------- 1 + ...
这个连分数计算的“层数”越多,它的值越接近黄金分割数。
请你利用这一特性,求出黄金分割数的足够精确值,要求四舍五入到小数点后100位。
小数点后3位的值为:0.618
小数点后4位的值为:0.6180
小数点后5位的值为:0.61803
小数点后7位的值为:0.6180340
(注意尾部的0,不能忽略)
你的任务是:写出精确到小数点后100位精度的黄金分割值。
注意:尾数的四舍五入! 尾数是0也要保留!
显然答案是一个小数,其小数点后有100位数字,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。
思路:
黄金连分数其实就是黄金比例,当fib[]有极限时,fib[n-1]/fib[n]就是黄金比,约等于 (根号5-1)/2
我们可以按照上面的那个公式先写几项:1/2,2/3,3/5,5/8,8/13……可以看出其实就是相邻两项斐波那契数相除。
可以用斐波纳契数列和模拟手算除法实现
注
为什么取到48 和 49 我本来以为是爆int 发现49就爆了,所以我真不知道
答案:
0.6180339887498948481971959525508621220510663574518538453723187601229582821971784348083863296133320592
题目代码
#include<iostream>
using namespace std;
typedef long long LL;
void div(LL a,LL b,int end,int begin)//模拟手工除法
{
if(begin>end)return ;
int tmpans=a/b;
cout<<tmpans;
div((a%b)*10,b,end,begin+1);
}
int main()
{
unsigned long long f[500]={0,1};
for (int i = 2; i<100; i++)f[i] = f[i - 1] + f[i - 2];
div(f[48],f[49],100,0);
return 0;
}