题目链接:牛客练习赛79 D
题目大意
定义一个D型回文串S:S长度小于D称之为D型回文,S长度大于等于D,且任意长度为D的子串都是回文称之为D型回文。
问你一个字符串S最少能分成几个连续的子串,都是D型回文?
思路
其实就是将连续的D型回文拼到一起,看最后有几个D型回文团,比如[1,2,3,4,5,6](下标),如果[1 2]回文,[2 3]回文,[3 4]不回文,[4 5]回文,[5 6]回文,那么前两个和后两个可以拼到一起,就是[1 2 3], [4 5 6]这几个D型回文串。
判断回文就是翻转字符串不变,可以用到哈希,从左到右存hash数组,从右到左存hash数组,取子串判相等就好。
ac代码
#include<bits/stdc++.h>
using namespace std;
mt19937_64 rng(time(0));
#define io cin.tie(0);ios::sync_with_stdio(false);
#define ok(x, y) x >= 1 && x <= n && y >= 1 && y <= m
#define debug(x) cout<<#x<<"="<<x<<endl
#define lowbit(x) x&(-x)
#define pii pair<int,int>
#define mk make_pair
#define ll long long
#define ull unsigned long long
#define rs p<<1|1
#define ls p<<1
const int maxn = 1e7 + 5;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 1e18;
const int bas = 233;
inline ll read(){
ll p=0,f=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){p=(p<<1)+(p<<3)+(c^48),c=getchar();}
return f*p;
}
ull ha1[maxn], ha2[maxn];
char a[maxn];
ull use = 1;
bool check(int l, int r){
return ha1[r] - ha1[l - 1] * use == ha2[l] - ha2[r + 1] * use;
}
void solve(){
int n, D;
cin >> n >> D;
cin >> (a + 1);
for(int i = 1; i <= n; i ++) //正序hash
ha1[i] = ha1[i - 1] * bas + a[i] - 'a' + 1;
for(int i = n; i >= 1; i --) //倒序hash
ha2[i] = ha2[i + 1] * bas + a[i] - 'a' + 1;
for(int i = 1; i <= D; i ++) use = use * bas; //bas^D
int ans = 0;
for(int i = 1, j; i <= n; i = j){ //更新左端点为j
j = i + D - 1;//右端点
while(j <= n && check(j - D + 1, j)) j ++;//连续长度为D的子串回文
ans ++;
}
cout << ans << endl;
}
int main(){
// freopen("1.in", "r", stdin);
// freopen("std.out", "w", stdout);
// cout << fixed << setprecision(6)
io;
int t = 1;
// cin >> t;
while(t --){
solve();
}
return 0;
}