荷兰国旗问题,快速排序,堆排序

1.荷兰国旗问题

给定一个数组arr,和一个数num,请把小于num的数放在数组的 左边,等于num的数放在数组的中间,大于num的数放在数组的右边。
要求额外空间复杂度O(1),时间复杂度O(N)

public class Code_08_NetherlandsFlag {

	public static int[] partition(int[] arr, int l, int r, int p) {
		int less = l - 1;
		int more = r + 1;
		while (l < more) {
			if (arr[l] < p) {
				swap(arr, ++less, l++);
			} else if (arr[l] > p) {
				swap(arr, --more, l);
			} else {
				l++;
			}
		}
		return new int[] { less + 1, more - 1 };
	}

	// for test
	public static void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

	// for test
	public static int[] generateArray() {
		int[] arr = new int[10];
		for (int i = 0; i < arr.length; i++) {
			arr[i] = (int) (Math.random() * 3);
		}
		return arr;
	}

	// for test
	public static void printArray(int[] arr) {
		if (arr == null) {
			return;
		}
		for (int i = 0; i < arr.length; i++) {
			System.out.print(arr[i] + " ");
		}
		System.out.println();
	}

	public static void main(String[] args) {
		int[] test = generateArray();

		printArray(test);
		int[] res = partition(test, 0, test.length - 1, 1);
		printArray(test);
		System.out.println(res[0]);
		System.out.println(res[1]);

	}
}

具体解释

2.快速排序

2.1经典快排

如果明白了上面的荷兰国旗问题的话,快排就很容易理解了。
荷兰国旗问题是将指定的一个数字放在中间,两边分别是大于它和小于它的数字。我们将指定数字两侧的数字再进行如此操作,循环往复,直到全部有序,就ok了,这就是快速排序!!!
当然,也有可能有人会问,两侧随机的时候,怎么随机指定一个数字?很简单,我们默认每次都指定最后的一个元素即可。

java代码:

package basic_class_01;

import java.util.Arrays;

public class Code_04_QuickSort {

	public static void quickSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		quickSort(arr, 0, arr.length - 1);
	}

	public static void quickSort(int[] arr, int l, int r) {
		if (l < r) {
			
			int[] p = partition(arr, l, r);
			quickSort(arr, l, p[0] - 1);
			quickSort(arr, p[1] + 1, r);
		}
	}

	public static int[] partition(int[] arr, int l, int r) {
		int less = l - 1;
		int more = r;
		while (l < more) {
			if (arr[l] < arr[r]) {
				swap(arr, ++less, l++);
			} else if (arr[l] > arr[r]) {
				swap(arr, --more, l);
			} else {
				l++;
			}
		}
		swap(arr, more, r);
		return new int[] { less + 1, more };
	}

	public static void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

	// for test
	public static void comparator(int[] arr) {
		Arrays.sort(arr);
	}

	// for test
	public static int[] generateRandomArray(int maxSize, int maxValue) {
		int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
		for (int i = 0; i < arr.length; i++) {
			arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
		}
		return arr;
	}

	// for test
	public static int[] copyArray(int[] arr) {
		if (arr == null) {
			return null;
		}
		int[] res = new int[arr.length];
		for (int i = 0; i < arr.length; i++) {
			res[i] = arr[i];
		}
		return res;
	}

	// for test
	public static boolean isEqual(int[] arr1, int[] arr2) {
		if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
			return false;
		}
		if (arr1 == null && arr2 == null) {
			return true;
		}
		if (arr1.length != arr2.length) {
			return false;
		}
		for (int i = 0; i < arr1.length; i++) {
			if (arr1[i] != arr2[i]) {
				return false;
			}
		}
		return true;
	}

	// for test
	public static void printArray(int[] arr) {
		if (arr == null) {
			return;
		}
		for (int i = 0; i < arr.length; i++) {
			System.out.print(arr[i] + " ");
		}
		System.out.println();
	}

	// for test
	public static void main(String[] args) {
		int testTime = 500000;
		int maxSize = 100;
		int maxValue = 100;
		boolean succeed = true;
		for (int i = 0; i < testTime; i++) {
			int[] arr1 = generateRandomArray(maxSize, maxValue);
			int[] arr2 = copyArray(arr1);
			quickSort(arr1);
			comparator(arr2);
			if (!isEqual(arr1, arr2)) {
				succeed = false;
				printArray(arr1);
				printArray(arr2);
				break;
			}
		}
		System.out.println(succeed ? "Nice!" : "Fucking fucked!");

		int[] arr = generateRandomArray(maxSize, maxValue);
		printArray(arr);
		quickSort(arr);
		printArray(arr);

	}

}

2.2随机快排

随机快排是对快排的优化,效率更高!
经典快排划出来的左边区域和右边区域,很有可能是不平等的。这样可能每次只搞定一次数,在最差情况下,快排时间复杂为O(n2),和数据状况有关系!

随机快排,就是在数组中,随机选择一个数字,然后用这个数和数组最后一个元素换位置,这样说,就不能说,轻易找到最差情况,当然也有可能。随机快排的复杂度是一个长期期望的复杂度O(N*logN),额外控件复杂度O(logN)

代码上面来说,只是加上一行,随机数组中一个数和数组最后的元素的进行交换的代码

swap(arr, l + (int) (Math.random() * (r - l + 1)), r);

3.堆排序

堆排本身就很重要了,但是更重要的是,堆这一个结构!!!

3.1堆

堆这结构其实就是一个完全二叉树。

二叉树我们都知道,就是一棵树下面有俩孩子,那什么是完全二叉树哪?
要么是一个满二叉树或者每一层是从左到右依次补齐的。

什么是满二叉树哪?就是最后一层都是叶节点,剩下的部分两个节点都全。
(注:叶节点就是下面没有节点)

二叉树其实我们可以用数组去表示
举个例子:
在这里插入图片描述
那这到底要怎么对应呢?一个下标为i,它的孩子是什么呢?
2i+1,就是他的左节点
2
i+2,就是他的右节点

而一个i他的父节点是什么呢?
(i-1)/2,就是他父节点的小标
所以当你有一个数组,有上面的关系,你就可以脑补出一个完全二叉树。
换句话说,并不存在实际的完全二叉树,他就是数组结构,只是在数组结构中,定义了一个规则,我们可以在这个规则中,产生与之相对应的完全二叉树。

3.2大根堆和小根堆

堆就是完全二叉树,谈到堆,就有一个隐藏含义:到底是大根堆还是小根堆。那他俩都是啥含义呢?
先说大根堆,在一个完全二叉树中,任何一个子树的最大值,都是头部。
举个例子:
在这里插入图片描述
小根堆同理,任何一个子树的最小值,都是头部,就是小根堆。

问题来了,我给你一个数组,你怎么把它调成大根堆?
我们假设有一个数组,把它想象成一个完全二叉树。让它每一个节点的头部,和它的两个孩子做比较,如果大于等于。那就不用动,如果小于,那就让大的那个孩子和头部换位置,以此,循环往复。

java代码:

private static void a(int[] arr) {
        if(arr==null||arr.length<2){
            return;
        }
        //把数组变成大根堆
        for (int i=0;i<arr.length;i++){
            b(arr,i);
        }
    }

    private static void b(int[] arr, int index) {
        while (arr[index]>arr[(index-1)/2]){
            s(arr,index,(index-1)/2);
            index = (index-1)/2;
        }
    }

    private static void s(int[] arr, int x, int y) {
        int t = x;
        x = y;
        y = t;
    }

那将一个数组转化为大根堆的事件复杂度为O(N)

那我们假设数组中有一个值发生变化了,变小了,怎么样调整才能让它继续还是大根堆?

那就找出他的两个孩子中的最大值,让他和他的两个孩子进行比较,如果他大,不用动,如果他小,就和他较大的儿子换位置,以此往复

public static void heapify(int[] arr, int index, int size) {
		int left = index * 2 + 1;
		while (left < size) {
			int largest = left + 1 < size && arr[left + 1] > arr[left] ? left + 1 : left;
			largest = arr[largest] > arr[index] ? largest : index;
			if (largest == index) {
				break;
			}
			swap(arr, largest, index);
			index = largest;
			left = index * 2 + 1;
		}
	}

3.3堆排序

第一步:让这个数组变成大根堆
第二步:把最后一个位置和第一个位置做交换
第三步:让堆的大小减一
第四步:在剩下的数组中,做上面改变一个数组的值的过程,就重新调整成大根堆
第五步:把堆顶和数组第二个位置交换
循环往复,减完为止。

package basic_class_01;

import java.util.Arrays;

public class Code_03_HeapSort {

	public static void heapSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		for (int i = 0; i < arr.length; i++) {
			heapInsert(arr, i);
		}
		int size = arr.length;
		swap(arr, 0, --size);
		while (size > 0) {
			heapify(arr, 0, size);
			swap(arr, 0, --size);
		}
	}

	public static void heapInsert(int[] arr, int index) {
		while (arr[index] > arr[(index - 1) / 2]) {
			swap(arr, index, (index - 1) / 2);
			index = (index - 1) / 2;
		}
	}

	public static void heapify(int[] arr, int index, int size) {
		int left = index * 2 + 1;
		while (left < size) {
			int largest = left + 1 < size && arr[left + 1] > arr[left] ? left + 1 : left;
			largest = arr[largest] > arr[index] ? largest : index;
			if (largest == index) {
				break;
			}
			swap(arr, largest, index);
			index = largest;
			left = index * 2 + 1;
		}
	}

	public static void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

	// for test
	public static void comparator(int[] arr) {
		Arrays.sort(arr);
	}

	// for test
	public static int[] generateRandomArray(int maxSize, int maxValue) {
		int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
		for (int i = 0; i < arr.length; i++) {
			arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
		}
		return arr;
	}

	// for test
	public static int[] copyArray(int[] arr) {
		if (arr == null) {
			return null;
		}
		int[] res = new int[arr.length];
		for (int i = 0; i < arr.length; i++) {
			res[i] = arr[i];
		}
		return res;
	}

	// for test
	public static boolean isEqual(int[] arr1, int[] arr2) {
		if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
			return false;
		}
		if (arr1 == null && arr2 == null) {
			return true;
		}
		if (arr1.length != arr2.length) {
			return false;
		}
		for (int i = 0; i < arr1.length; i++) {
			if (arr1[i] != arr2[i]) {
				return false;
			}
		}
		return true;
	}

	// for test
	public static void printArray(int[] arr) {
		if (arr == null) {
			return;
		}
		for (int i = 0; i < arr.length; i++) {
			System.out.print(arr[i] + " ");
		}
		System.out.println();
	}

	// for test
	public static void main(String[] args) {
		int testTime = 500000;
		int maxSize = 100;
		int maxValue = 100;
		boolean succeed = true;
		for (int i = 0; i < testTime; i++) {
			int[] arr1 = generateRandomArray(maxSize, maxValue);
			int[] arr2 = copyArray(arr1);
			heapSort(arr1);
			comparator(arr2);
			if (!isEqual(arr1, arr2)) {
				succeed = false;
				break;
			}
		}
		System.out.println(succeed ? "Nice!" : "Fucking fucked!");

		int[] arr = generateRandomArray(maxSize, maxValue);
		printArray(arr);
		heapSort(arr);
		printArray(arr);
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值