简单-LeetCode 69. x的平方根

该博客介绍了如何使用二分法解决LeetCode中的第69题,即找到非负整数x的平方根。通过分析平方根与数的关系,确定了搜索范围,并给出了解题思路和代码实现,其中初始左边界设为1,右边界设为x的一半,以避免溢出和不必要的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

来源:x的平方根

实现 int sqrt(int x) 函数。

计算并返回 x 的平方根,其中 x 是非负整数。

由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。

示例

在这里插入图片描述

解题思路及代码
1. 思路

一个数的平方根,肯定不会大于它本身,要么小于它本身的一半,要么大于它本身的一半,要么等于它本身的一半。我们考虑用二分法来解决。即若中间数的平方小于x,则继续在其中间数的左边搜索,若大于x,则继续在其中间数的右边搜索,并继续二分进一步确定其平方根所在范围。
左右边界如何设置?一开始我将左边界设置为0,右边界设置为x,在计算的时候发现出现溢出的现象,此时可以考虑将右边界设置为一个很大的数,所有用例都达不到的数,例如999999。那我们再考虑有没有办法更进一步缩小搜索范围。注意到,sqrt(x) <= (x/2),即满足平方根小于其一半的数的范围为:x >= 4 or x <= 0, 在0 <= x < 4范围内,0,1,2,3,除了0,另外三个数平方根输出均为1,而其他 >=0 的数的平方根均小于其一半,因此我们可以直接将左边界初始化为left = 1, 右边界初始化为right = x /2

2. 代码
var mySqrt = function(x) {
    if (x == 0) {
        return 0;
    }
    var left = 1;
    var right = x >> 1;
    while(left < right) {
        var mid = (left + right + 1) >> 1;    // 注意要取右中位数,取左中位数会陷入死循环
        var square = mid * mid;
        if (square > x) {
            right = mid - 1;
        } else {
            left = mid;
        }
    }
    return left;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值