Numpy 是用于数据科学计算的基础模块,除了能完成科学计算的任务,还能够被用做高效的 多维数据容器 ,用于存储和处理大型矩阵。
Numpy 基础知识之“多维数组的创建”
Numpy 数组对象 ndarray
Python 中提供的 array 模块,能直接保存数值,跟 C 语言中的一维数组比较类,但不支持多维,也没有各种各样的运算函数。但是 Numpy 中的 ndarray 对象,弥补了这些不足,它是可以存储单一数据类型的多维数组。
ndarray(N-dimensional Array Object)属性和创建
想要掌握 ndarray 对象,首先必须先了解一下,该对象的属性:
| 属性 | 说明 |
|---|---|
| ndim | ndarrayObject.ndim 将返回一个 int 类型的值,表示 数组的维数 |
| shape | ndarrayObject.shape 将以元组(tuple)形式返回数组的“尺寸”,也就是说“ n n n 行 m m m 列的矩阵”将返回(n, m) |
| size | ndarrayObject.size 将返回一个 int 类型的值,表示数组中 元素的总数。如,“ n n n 行 m m m 列的矩阵” 将返回 n*m对应的 int 值 |
| dtype | 返回一个 data-type类型,描述的是数组中元素的类型(至于都有哪些数据类型,请到) |
| itemsize | ndarrayObject.itemsize 将返回一个 int 类型的值,表示数组中每个元素的大小(以字节B为单位)。如,一个元素的类型为 float64 的数组,则其 itemsize 属性的值为 8 (float64 占 64 位,一个字节是 8 位,64/8 = 8)。 |
了解了 ndarray 对象的属性,下面就是如何创建一个数组:
- 使用 ndarray 对象的
array函数创建 - 使用 ndarray 对象的
arange函数创建 - 使用 ndarray 对象的
linspace函数创建 - 使用 ndarray 对象的
logspace函数创建
除此之外,Numpy 还提供了其他函数创建特殊的数组: zeros函数eye函数diag函数ones函数
下面就对上述创建数组的函数进行一一介绍:
array 函数
基本语法和主要参数讲解:
numpy.array(
object, # 接收一个 array,表示想要创建的数组。无默认值。
dtype = Nonem, # 接收一个 data-type,表示数组所需要的数据类型。如果没有给定,则选择 object 参数中所需要的最小类型。默认为 None
copy = True,
order = 'K',
subbok = False,
ndmin = 0 # 接收一个 int 类型的值,指定生成的数组应该具有的最小维数。默认为 None
)
具体示例:
# 创建数组
import numpy as np # 导入Numpy库
array1 = np.array([1, 2, 3, 4, 5]) # 创建一个

本文介绍了Numpy的ndarray对象,作为Python数据分析的基础模块,ndarray支持多维数组并提供丰富的运算功能。文章详细讲解了如何使用array、arange、linspace和logspace等函数创建数组,并提到了Numpy创建特殊数组的其他方法。同时,讨论了数组的数据类型和用户自定义数据类型,为高效处理和存储大型矩阵提供了基础。
最低0.47元/天 解锁文章

8311

被折叠的 条评论
为什么被折叠?



