[编程学习][算法学习][算法问题]L形砖拼缺一个口的国际象棋盘

这篇博客介绍了如何利用递归解决L形砖块拼凑2^k * 2^k尺寸的国际象棋盘问题,其中L形砖有4种摆放方式。通过分析不同层次的L形砖排列模式,得出递归编程思路。博客内容包括问题分析、递归编程的全局变量、输入输出和递归思想,并提供了详细的递推公式来确定各个L形砖的位置和朝向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个问题是在《python算法教程》[挪威]Magnus 著 凌杰译  中国工信出版集团/人民邮电出版社

书中76-79遇到的,好像是属于归并还是递归的一类题目。(书本没太说明白,初学者,对题目分类不清晰)

题目如下:

棋盘如左图所示,L形砖如右图所示。(这个国际棋盘可视为由8*8-1个小正方形组成,L形砖由3个小正方形组成(小正方形是形状最小的单位),有缺口向左上左下、右上右下四种摆法。)

  • 输入:棋盘尺寸:2^k * 2^k(k为正整数)。(因为书上没规定,我们设k小于等于10吧 其实大小不太要紧,重要的是思路)
  • 输出:需要输出L形砖的摆放方法。(数值大于0的为L型砖的编号,为0即为缺口。)
  • 为了输出方便,我们假设左上角为棋盘缺口。
  • 输出样例如下:当尺寸为2时:

 1.分析:(不一定只有一种拼法的!可能不唯一)

1.1先画两个看规律

其实,如果看看,当尺寸为4时摆法:

当尺寸为8时,为了显示方便,我们不写数字了:

可以看到其实,K每变大一个,我们都会在上一级的情况下,拼多一个大一倍的L形砖。

这一级的大L型砖,是由上一级的小L型砖组成的。

那么对于大L形砖是怎么又上一级的小L型砖组成的呢?

1.2对每一级的L形砖放大分析

当尺寸为4时,即第二级的L形砖(灰色),是由第一级(最基本的L形砖)作为基本模块,由如下方式构成的:

当尺寸为8时,即第三级的L形砖(灰蓝色),是由第二级的L形砖(灰色)作为基本模块,由如下方式构成:

分析上面两个可以知道(不要管他颜色,颜色不是一一对应的),每一级的L形砖是由上一级的L形砖按相同的摆法模式构成的。

即:对于每一个层次(除了k=1的时候),棋盘都是由1+1个L形块构成的(即一个对应该层次的大L型块,一个对应上一层次的小L形块),而大L型块又是由4个上一层次的小L型块构成的(对于每一个层次,尽管L型的大小不同,但他们的构成模式是一样的)。

因此可以使用递归进行编程。

2.递归的编程

我们约定数组的访问是从[0][0]开始的吧。[0][0]代表左上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值