矩阵置零
题目描述:
给定一个 m x n 的矩阵,如果一个元素为 0,则将其所在行和列的所有元素都设为 0。请使用 原地算法。进阶:
- 一个直接的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。
- 一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
- 你能想出一个常数空间的解决方案吗?
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
// 记录原始第一行和第一列状态
boolean col = false;
boolean row = false;
for(int i = 0 ; i<n ; i++){
if(matrix[0][i] == 0){
col = true;
break;
}
}
for(int j = 0 ; j<m ; j++){
if(matrix[j][0] == 0){
row = true;
break;
}
}
// 改变第一行和第一列的状态
for(int i = 1 ; i<m ; i++){
for(int j = 1 ; j<n ; j++){
if(matrix[i][j] == 0){
matrix[0][j] = 0; // 第一行对应位置赋予0
matrix[i][0] = 0; // 第一列对应位置赋予0
}
}
}
// 内部操作扫描零
for(int i = 1 ; i<m ; i++){ // 处理内部
for(int j = 1; j<n ; j++){
if(matrix[0][j] == 0 || matrix[i][0] == 0){
matrix[i][j] = 0;
}
}
}
if(col){ // 当原始列状态为true时,即该第一行全为零
for(int i = 0 ; i<n ; i++){
if(matrix[0][i] == 0){
for(int j = 0 ; j<n ; j++) matrix[0][j] = 0;
break;
}
}
}
if(row){ // 当原始行状态为true时,即第一列全为零
for(int i = 0 ; i<m ; i++){
if(matrix[i][0] == 0){
for(int j = 0 ; j<m ; j++) matrix[j][0] = 0;
break;
}
}
}
}
}
当通过第一行和第一列记录所在列和所在行全为零的状态时,这里会出现一个坑:就是会覆盖第一行以及第一列的初始状态(这里的状态为是否含有零),因为如果覆盖了第一行和第一列,后面会将不该置于零的该列和该行全置为了零,因此需要事先保存现场,以待后续处理。该题算法的时间复杂度为O(mn),空间复杂度O(1)。