动手实现ID3决策树代码

ID3决策树

本文从计算数据集的信息熵、划分数据集、选择最优特征、递归训练一棵树、预测五个方面介绍怎样构建ID3决策树。
先要介绍信息熵和信息增益的这两个公式:
Ent ⁡ ( D ) = − ∑ k = 1 ∣ Y ∣ p k log ⁡ 2 p k \operatorname{Ent}(D)=-\sum_{k=1}^{|\mathcal{Y}|} p_{k} \log _{2} p_{k} Ent(D)=k=1Ypklog2pk Gain ⁡ ( D , a ) = Ent ⁡ ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ Ent ⁡ ( D v ) \operatorname{Gain}(D, a)=\operatorname{Ent}(D)-\sum_{v=1}^{V} \frac{\left|D^{v}\right|}{|D|} \operatorname{Ent}\left(D^{v}\right) Gain(D,a)=Ent(D)v=1VDDvEnt(Dv)
具体也可参考这篇文章,详细介绍了决策树公式及知识框架。

计算数据集的信息熵

假设现在的数据集dataSet最后一列为样本标签,因为数据集的信息熵只与标签的纯度有关,所以需要取出数据集最后一列的类别及其数量到字典中,代入公式计算信息熵。

以下为计算数据集信息熵的函数:

def entropy(dataSet):
    labelCounts = {}
    length = len(dataSet)
    for example in dataSet:
        if example[-1] not in labelCounts: labelCounts[example[-1]] = 0
        labelCounts[example[-1]] += 1
    e = 0.0
    for i in labelCounts.values():
        p_k = float(i) / length
        e -= p_k * log(p_k, 2)
    return e

划分数据集

以下函数功能为按照特征的不同值将样本集划分为多个数据集。

def splitDataSet(dataSet, axis, value):
    reDataSet = []
    for example in dataSet:
        if example[axis] == value: 
            reDataSet += [example[:axis] + example[axis + 1:]]
    return reDataSet

选择最优特征

遍历各个特征,选取信息熵最小的作为最优划分属性。

def chooseBestFeature(dataSet):
    bestFeature = -1
    length = len(dataSet)
    minEntropy = entropy(dataSet)
    for axis in range(len(dataSet[0]) - 1):
        newEntropy = 0.0
        record = {}
        for example in dataSet:
            if example[axis] not in record: record[example[axis]] = 0
            record[example[axis]] += 1
        for i in record:
            newEntropy += entropy(splitDataSet(dataSet, axis, i)) * record[i] / length
        if newEntropy < minEntropy:
            bestFeature = axis
            minEntropy = newEntropy
    return bestFeature

递归训练一棵树

当前结点都属于同一个标签时,结束递归。

def trainTree(dataSet,feature_name):
    myTree = {}
    k = chooseBestFeature(dataSet)
    s = set()
    for example in dataSet:
        s.add(example[k])
    tree = {}
    for i in s:
        newDataSet = splitDataSet(dataSet, k, i)
        labelRecord = []
        for example in newDataSet:
            labelRecord.append(example[-1])
        if labelRecord.count(labelRecord[0]) == len(labelRecord):
            tree[i] = labelRecord[0]  
        else: 
            tree[i] = trainTree(newDataSet, feature_name)
    myTree[feature_name[k]] = tree
    return myTree

预测

当结果是字典时,继续递归,否则输出该值为预测结果。

def predict(inputTree,feature_name,testVec):
    feature = list(inputTree.keys())[0]
    k = feature_name.index(feature)
    childTree = inputTree[feature]
    label = childTree[testVec[k]]
    if isinstance(label, dict): return predict(label, feature_name, testVec)
    return label

sklearn实现决策树

除了ID3决策树,常用的还有C4.5决策树和CART决策树。

Python的sklearn库中提供了决策树的模型,可用于快速构建不同类型的决策树模型,具体可参考……待续

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值