pytorch搭建Lstm构建天池算法大赛---心跳信号分类预测baseline

该博客介绍了一个使用PyTorch进行心跳信号分类的基础项目,包括数据预处理、LSTM模型构建、五折交叉验证和训练过程。代码中提供了从CSV文件加载数据、数据转换、模型定义及训练的详细步骤。模型简单,未进行特征工程和参数调优,目前得分1396,适合初学者入门。

比赛链接天池零基础入门数据挖掘-心跳信号分类预测

完整工程代码点击

这里直接搭建一个baseline,直接跑代码即可。

import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split, GroupKFold, KFold
import numpy as np
import torch
from    torch import autograd
import cv2
import os
from tqdm import tqdm

torch.manual_seed(10)#固定每次初始化模型的权重

train = pd.read_csv('/零基础入门数据挖掘-心跳信号分类预测/train.csv')
testA = pd.read_csv('/零基础入门数据挖掘-心跳信号分类预测/testA.csv')
sample_submit = pd.read_csv('/零基础入门数据挖掘-心跳信号分类预测/sample_submit.csv')

train['heartbeat_signals'] = train['heartbeat_signals'].apply(lambda x : np.array(x.split(',')).astype('float32'))
train['label'] = train['label'].apply(lambda x : np.array(x).astype('int32'))

testA['heartbeat_signals'] = testA['heartbeat_signals'].apply(lambda x : np.array(x.split(',')).astype('float32'))

data = []
for val in train['heartbeat_signals'].values:
    data.append(val)
data = np.array(data)
targets = train['label'].values

data = data.reshape(data.shape[0],1,205)
#data = torch.from_numpy(data).to(torch.float32)#转换成tensor


test = [
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值