比赛链接天池零基础入门数据挖掘-心跳信号分类预测
。
完整工程代码点击。
这里直接搭建一个baseline,直接跑代码即可。
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split, GroupKFold, KFold
import numpy as np
import torch
from torch import autograd
import cv2
import os
from tqdm import tqdm
torch.manual_seed(10)#固定每次初始化模型的权重
train = pd.read_csv('/零基础入门数据挖掘-心跳信号分类预测/train.csv')
testA = pd.read_csv('/零基础入门数据挖掘-心跳信号分类预测/testA.csv')
sample_submit = pd.read_csv('/零基础入门数据挖掘-心跳信号分类预测/sample_submit.csv')
train['heartbeat_signals'] = train['heartbeat_signals'].apply(lambda x : np.array(x.split(',')).astype('float32'))
train['label'] = train['label'].apply(lambda x : np.array(x).astype('int32'))
testA['heartbeat_signals'] = testA['heartbeat_signals'].apply(lambda x : np.array(x.split(',')).astype('float32'))
data = []
for val in train['heartbeat_signals'].values:
data.append(val)
data = np.array(data)
targets = train['label'].values
data = data.reshape(data.shape[0],1,205)
#data = torch.from_numpy(data).to(torch.float32)#转换成tensor
test = [

该博客介绍了一个使用PyTorch进行心跳信号分类的基础项目,包括数据预处理、LSTM模型构建、五折交叉验证和训练过程。代码中提供了从CSV文件加载数据、数据转换、模型定义及训练的详细步骤。模型简单,未进行特征工程和参数调优,目前得分1396,适合初学者入门。
最低0.47元/天 解锁文章
502

被折叠的 条评论
为什么被折叠?



