参考博客
最小顶点覆盖等于二分图的最大匹配。
最大独立集=所有顶点数-最小顶点覆盖
二分图的最大团=补图的最大独立集。
HDU1151
原题地址
模板题,给定一个DAG(有向无环图),选定最少的点,使得从这些点出发可以覆盖每一条路径(即每个点都经过至少一遍)。
代码:
首先构建二分图,图的左边代表1-n,右边也代表1-n,若两点i->j可行,则二分图中建边i->j。求最少路径覆盖即为最大独立集(证明我一直没找到,不过稍微想想,点A与B之间没有边相连,意味着互相不可到达,那就意味着需要多一条路径)
代码见参考博客
POJ1548
原题地址
题目大意:给出一张地图上的垃圾坐标,以及若干机器人。每个机器人只可以从左->右,上->下,走完就废。问最少派出多少个机器人才能捡完所有垃圾。
代码:
最小路径覆盖的话非常简单,这题显然可以转化为DAG,代码见参考博客
不过也可以使用LIS,运用dilworth定理,也就是求最长反链的长度。也就是求最长下降子数列的长度。代码见参考博客
估计人数
代码:
与上题有相似之处,但要求必须相邻。
首先,可以使用最小可重复路径覆盖,因为该图可以轻易转化为DAG图,具体方法见参考博客
不过,显然可以仿照上一题使用LCS来解决。这里观察到对于每个联通块,显然有最长反链的长度即为最少人数(dilworth定理),代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<map>
#include<vector>
#include<string>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define maxn 100010
#define mkp make_pair
#define inf 1e6
typedef long long ll;
const ll mod = 1e9 + 7;
const double pi = acos(-1.0);
int n, m, vis[22][22];
char mmp[22][22];
int dx[4] = { 0,0,-1,1 };
int dy[4] = { -1,1,0,0 };
bool jug(int x, int y)
{
if (x >= 1 && x <= n && y >= 1 && y <= m) return true;
return false;
}
bool cmp(pair<int, int>u, pair<int, int>v)
{
if (u.second == v.second) return u.first > v.first;
return u.second < v.second;
}
int solve(vector<pair<int, int>>ww)
{
int i, j, dp[500], ans = 1;
sort(ww.begin(), ww.end(), cmp);
for (i = 0; i < ww.size(); i++) dp[i] = 1;
for (i = 0; i < ww.size(); i++)
{
for (j = 0; j < i; j++)
{
if (ww[i].first<ww[j].first && ww[i].second>ww[j].second)
{
dp[i] = dp[j] + 1;
}
}
}
for (i = 0; i < ww.size(); i++) ans = max(ans, dp[i]);
return ans;
}
int main()
{
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
int i, j, r, l, ans = 0;
cin >> n >> m;
cin.get();
for (i = 1; i <= n; i++)
{
cin >> mmp[i] + 1;
}
for (i = 1; i <= n; i++)
{
for (j = 1; j <= m; j++)
{
vis[i][j] = mmp[i][j] - '0';
}
}
for (i = 1; i <= n; i++)
{
for (j = 1; j <= m; j++)
{
if (vis[i][j] == 0) continue;
vector < pair<int, int> >ww;
queue<pair<int, int> >qq;
qq.push(mkp(i, j));
vis[i][j] = 0;
ww.push_back(mkp(i, j));
while (!qq.empty())
{
int tx = qq.front().first, ty = qq.front().second;
qq.pop();
for (r = 0; r < 4; r++)
{
int qx = tx + dx[r];
int qy = ty + dy[r];
if (!jug(qx, qy) || vis[qx][qy] == 0) continue;
qq.push(mkp(qx, qy));
ww.push_back(mkp(qx, qy));
vis[qx][qy] = 0;
}
}
ans += solve(ww);
}
}
cout << ans << endl;
return 0;
}
题外话:这篇总结原本计划上学期就写了的,结果各种事耽搁了。虽然2个月前我的ACM生涯就宣告结束了,但总有一些遗憾想要弥补。总的来说,两年半的生涯,结果是相对令人满意的,但过程中却充满了遗憾。保研与竞赛间的冲突一直使我个人的心态处于割裂之中,特别是疫情在家期间,各种论坛上一致看衰ICPC是否能如期举行,而计科的内卷氛围又与日俱增。现在而言,前途依然迷茫,但心情上却平静了许多。
另外,个人的博客的整理结构是参照当时高考笔记的结构整理的,现在看来这个结构是失败的,但与算法相关的已经懒得改了,就这样好吧。。。