最小可重复路径覆盖

参考博客
最小顶点覆盖等于二分图的最大匹配。
最大独立集=所有顶点数-最小顶点覆盖
二分图的最大团=补图的最大独立集。

HDU1151

原题地址
模板题,给定一个DAG(有向无环图),选定最少的点,使得从这些点出发可以覆盖每一条路径(即每个点都经过至少一遍)。

代码:
首先构建二分图,图的左边代表1-n,右边也代表1-n,若两点i->j可行,则二分图中建边i->j。求最少路径覆盖即为最大独立集(证明我一直没找到,不过稍微想想,点A与B之间没有边相连,意味着互相不可到达,那就意味着需要多一条路径)
代码见参考博客

POJ1548

原题地址
题目大意:给出一张地图上的垃圾坐标,以及若干机器人。每个机器人只可以从左->右,上->下,走完就废。问最少派出多少个机器人才能捡完所有垃圾。

代码:
最小路径覆盖的话非常简单,这题显然可以转化为DAG,代码见参考博客
不过也可以使用LIS,运用dilworth定理,也就是求最长反链的长度。也就是求最长下降子数列的长度。代码见参考博客

估计人数

原题地址

代码:
与上题有相似之处,但要求必须相邻。
首先,可以使用最小可重复路径覆盖,因为该图可以轻易转化为DAG图,具体方法见参考博客
不过,显然可以仿照上一题使用LCS来解决。这里观察到对于每个联通块,显然有最长反链的长度即为最少人数(dilworth定理),代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<map>
#include<vector>
#include<string>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define maxn 100010
#define mkp make_pair
#define inf 1e6
typedef long long ll;
const ll mod = 1e9 + 7;
const double pi = acos(-1.0);
int n, m, vis[22][22];
char mmp[22][22];
int dx[4] = { 0,0,-1,1 };
int dy[4] = { -1,1,0,0 };

bool jug(int x, int y)
{
	if (x >= 1 && x <= n && y >= 1 && y <= m) return true;
	return false;
}

bool cmp(pair<int, int>u, pair<int, int>v)
{
	if (u.second == v.second) return u.first > v.first;
	return u.second < v.second;
}

int solve(vector<pair<int, int>>ww)
{
	int i, j, dp[500], ans = 1;
	sort(ww.begin(), ww.end(), cmp);
	for (i = 0; i < ww.size(); i++) dp[i] = 1;
	for (i = 0; i < ww.size(); i++)
	{
		for (j = 0; j < i; j++)
		{
			if (ww[i].first<ww[j].first && ww[i].second>ww[j].second)
			{
				dp[i] = dp[j] + 1;
			}
		}
	}
	for (i = 0; i < ww.size(); i++) ans = max(ans, dp[i]);
	return ans;
}

int main() 
{
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	int i, j, r, l, ans = 0;
	cin >> n >> m;
	cin.get();
	for (i = 1; i <= n; i++)
	{
		cin >> mmp[i] + 1;
	}
	for (i = 1; i <= n; i++)
	{
		for (j = 1; j <= m; j++)
		{
			vis[i][j] = mmp[i][j] - '0';
		}
	}
	for (i = 1; i <= n; i++)
	{
		for (j = 1; j <= m; j++)
		{
			if (vis[i][j] == 0) continue;
			vector < pair<int, int> >ww;
			queue<pair<int, int> >qq;
			qq.push(mkp(i, j));
			vis[i][j] = 0;
			ww.push_back(mkp(i, j));
			while (!qq.empty())
			{
				int tx = qq.front().first, ty = qq.front().second;
				qq.pop();
				for (r = 0; r < 4; r++)
				{
					int qx = tx + dx[r];
					int qy = ty + dy[r];
					if (!jug(qx, qy) || vis[qx][qy] == 0) continue;
					qq.push(mkp(qx, qy));
					ww.push_back(mkp(qx, qy));
					vis[qx][qy] = 0;
				}
			}
			ans += solve(ww);
		}
	}
	cout << ans << endl;
    return 0;
}

题外话:这篇总结原本计划上学期就写了的,结果各种事耽搁了。虽然2个月前我的ACM生涯就宣告结束了,但总有一些遗憾想要弥补。总的来说,两年半的生涯,结果是相对令人满意的,但过程中却充满了遗憾。保研与竞赛间的冲突一直使我个人的心态处于割裂之中,特别是疫情在家期间,各种论坛上一致看衰ICPC是否能如期举行,而计科的内卷氛围又与日俱增。现在而言,前途依然迷茫,但心情上却平静了许多。
另外,个人的博客的整理结构是参照当时高考笔记的结构整理的,现在看来这个结构是失败的,但与算法相关的已经懒得改了,就这样好吧。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值