使用IK分词器,需要重写一些功能
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.Tokenizer;
public class IKAnalyzer6x extends Analyzer {
private boolean useSmart;
public boolean useSmart() {
return useSmart;
}
public void setUseSmart(boolean useSmart) {
this.useSmart = useSmart;
}
public IKAnalyzer6x() {
this(false); // IK分词器Lucene Analyzer接口实现类;
// 默认细粒度切分算法
}
/**
* IK分词器Lucene Analyzer接口实现类;当为true时,分词器进行智能切分
*
* @param useSmart
*/
public IKAnalyzer6x(boolean useSmart) {
super();
this.useSmart = useSmart;
}
// 重写最新版本的createComponents;重载Analyzer接口,构造分词组件
@Override
protected TokenStreamComponents createComponents(String fieldName) {
Tokenizer _IKTokenizer = new IKTokenizer6x(this.useSmart());
return new TokenStreamComponents(_IKTokenizer);
}
}
import java.io.IOException;
import org.apache.lucene.analysis.Tokenizer;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;
import org.apache.lucene.analysis.tokenattributes.TypeAttribute;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;
public class IKTokenizer6x extends Tokenizer {
// IK分词器实现
private IKSegmenter _IKImplement;
// 词元文本属性
private final CharTermAttribute termAtt;
// 词元位移属性
private final OffsetAttribute offsetAtt;
// 词元分类属性
//(该属性分类参考org.wltea.analyzer.core.Lexeme中的分类常量)
private final TypeAttribute typeAtt;
// 记录最后一个词元的结束位置
private int endPosition;
// Lucene 6.x Tokenizer适配器类构造函数;实现最新的Tokenizer接口
public IKTokenizer6x(boolean useSmart) {
super();
offsetAtt = addAttribute(OffsetAttribute.class);
termAtt = addAttribute(CharTermAttribute.class);
typeAtt = addAttribute(TypeAttribute.class);
_IKImplement = new IKSegmenter(input, useSmart);
}
@Override
public boolean incrementToken() throws IOException {
clearAttributes(); // 清除所有的词元属性
Lexeme nextLexeme = _IKImplement.next();
if (nextLexeme != null) {
// 将Lexeme转成Attributes
termAtt.append(nextLexeme.getLexemeText()); // 设置词元文本
termAtt.setLength(nextLexeme.getLength()); // 设置词元长度
offsetAtt.setOffset(nextLexeme.getBeginPosition(),
nextLexeme.getEndPosition()); // 设置词元位移
//记录分词的最后位置
endPosition = nextLexeme.getEndPosition();
typeAtt.setType(nextLexeme.getLexemeText()); // 记录词元分类
return true; // 返回true告知还有下个词元
}
return false; // 返回false告知词元输出完毕
}
@Override
public void reset() throws IOException {
super.reset();
_IKImplement.reset(input);
}
@Override
public final void end() {
int finalOffset = correctOffset(this.endPosition);
offsetAtt.setOffset(finalOffset, finalOffset);
}
}
测试比较类
import java.io.IOException;
import java.io.StringReader;
import com.baifan.lucene.ik.IKAnalyzer6x;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.cn.smart.SmartChineseAnalyzer;
import org.apache.lucene.analysis.tokenattributes
.CharTermAttribute;
/**
* 比较lucene6.0中自带的中文智能分词器SmartChineseAnalyzer和 IK Analyzer
*
* @author: baifan
* @date: 2021/6/7
*/
public class IkVSSmartcn {
private static String str1 = "公路局正在治理解放大道路面积水问题。";
private static String str2 = "IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。";
public static void main(String[] args) throws IOException {
Analyzer analyzer = null;
System.out.println("句子一: " + str1);
System.out.println("SmartChineseAnalyzer分词结果:");
analyzer = new SmartChineseAnalyzer();
printAnalyzer(analyzer, str1);
System.out.println("IKAnalyzer分词结果:");
analyzer = new IKAnalyzer6x(true);
printAnalyzer(analyzer, str1);
System.out.println("------------------------------------");
System.out.println("句子二:" + str2);
System.out.println("SmartChineseAnalyzer分词结果:");
analyzer = new SmartChineseAnalyzer();
printAnalyzer(analyzer, str2);
System.out.println("IKAnalyzer分词结果:");
analyzer = new IKAnalyzer6x(true);
printAnalyzer(analyzer, str2);
analyzer.close();
}
public static void printAnalyzer(Analyzer analyzer, String str) throws IOException {
StringReader reader = new StringReader(str);
TokenStream toStream = analyzer.tokenStream(str, reader);
toStream.reset(); // 清空流
CharTermAttribute teAttribute = toStream.getAttribute(CharTermAttribute.class);
while (toStream.incrementToken()) {
System.out.print(teAttribute.toString() + "|");
}
System.out.println();
}
结果
句子一: 公路局正在治理解放大道路面积水问题。
SmartChineseAnalyzer分词结果:
公路局|正|在|治理|解放|大|道路|面积|水|问题|
IKAnalyzer分词结果:
公路局|正在|治理|解放|大道|路面|积水|问题|
------------------------------------
句子二:IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。
SmartChineseAnalyzer分词结果:
ikanalyz|是|一个|开|源|的|基于|java|语言|开发|的|轻量级|的|中文|分词|工具包|
IKAnalyzer分词结果:
ikanalyzer|是|一个|开源|的|基于|java|语言|开发|的|轻量级|的|中文|分词|工具包|
最终结论:总体而言,IK Analyzer的中文分词的准确性比SmartChineseAnalyzer要高一些。