Equilibrium(思维/线段树)

题目
题意:给定两个长度为 n n n的数组 a i , b i a_i,b_i ai,bi,q次查询,每次查询区间 [ l , r ] [l,r] [l,r]中,是否存在若干次操作,使得操作后的区间里的每个元素满足 a i = b i a_i=b_i ai=bi。每次操作为从区间 [ l , r ] [l,r] [l,r]中选出若干偶数个下标 p o s 1 , p o s 2 , . . . , p o s k pos_1,pos_2,...,pos_k pos1,pos2,...,posk,对于下标 p o s 1 , p o s 3 , . . . pos_1,pos_3,... pos1,pos3,...的元素, a i a_i ai+1;对于下标 p o s 2 , p o s 4 . . . pos_2,pos_4... pos2,pos4... b i b_i bi+1。
如果存在,输出最少的操作次数;否则输出-1。
参考
思路:
1、做下转换,令 c i = b i − a i c_i=b_i-a_i ci=biai,每次操作相当于对元素 c i c_i ci做+1、-1操作
2、可以发现,每次操作,区间的权值和没有改变,令 s u m i sum_i sumi c i c_i ci的前缀和。要使得区间 [ l , r ] [l,r] [l,r] a i = b i a_i=b_i ai=bi,必要条件为 s u m r − s u m l − 1 = = 0 sum_r-sum_{l-1}==0 sumrsuml1==0
3、对于元素 c i c_i ci,都是先加后减,为使最终能 a i = b i a_i=b_i ai=bi,必须要满足区间 [ l , r ] [l,r] [l,r]上的前缀和非负。
证明:

  • 如果 a 1 < b 1 a_1<b_1 a1<b1,我们可以对区间 [ 1 , 2 ] [1,2] [1,2]操作 b 1 − a 1 b_1-a_1 b1a1次加法,使得 a 1 = = b 1 a_1==b_1 a1==b1
  • 对于操作后的数组,如果 a 2 < b 2 a_2<b_2 a2<b2,我们也可以做上述操作,取区间 [ 2 , 3 ] [2,3] [2,3]
  • 依此类推,直到区间 [ r − 1 , r ] [r-1,r] [r1,r]
  • 对于上次操作后的数组, a i a_i ai b i b_i bi的值的大小,实际上是原数组 a a a b b b的各自前缀和(即 s u m a i , s u m b i suma_i,sumb_i sumai,sumbi)的大小
  • 反之,如果存在某位置的前缀和 s u m i sum_i sumi不满足非负性(即 s u m a i > s u m b i suma_i>sumb_i sumai>sumbi),那么我们发现,到了第i个位置进行操作时,就无法利用上述的过程,使 a i = = b i a_i==b_i ai==bi了。

4、那么怎么在O(1)时间判断区间 [ l , r ] [l,r] [l,r]所有前缀和非负呢,只要满足 s u m l − 1 < = m i n i = l r s u m i sum_{l-1}<=min_{i=l}^{r}sum_i suml1<=mini=lrsumi即可
5、最少操作次数怎么求?实际上为 m a x i = l r s u m i − s u m l − 1 max_{i=l}^{r}sum_i-sum_{l-1} maxi=lrsumisuml1。因为我们每次都是+1、-1操作,那么影响操作次数的显然是 b i − a i b_i-a_i biai差值最大的那个(为啥不用考虑 b i − a i b_i-a_i biai差值最小的、负数的情况?因为对称性,考虑了正数就不用考虑负数了)。

6、区间查询最大和最小,可以线段树处理。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 100010; 
typedef long long ll;
#define inf 0x3f3f3f3f3f3f3f3f
#define lson (rt << 1)
#define rson (rt << 1 | 1)

int n, q, x;
ll sum[maxn];
ll mn[maxn<<2], mx[maxn<<2];

void pushup(int rt) {
	mn[rt] = min(mn[lson], mn[rson]);
	mx[rt] = max(mx[lson], mx[rson]);
}

void build(int rt, int l, int r) {
	if (l == r) {
		mn[rt] = mx[rt] = sum[l];
		return;
	}
	int m = (l + r) >> 1;
	build(lson, l, m);
	build(rson, m + 1, r);
	pushup(rt);
}

ll getMn(int rt, int l, int r, int a, int b) {
	if (l >= a && r <= b) {
		return mn[rt];
	}
	int m = (l + r) >> 1;
	ll res = inf;
	if (a <= m) res = getMn(lson, l, m, a, b);
	if (m < b) res = min(res, getMn(rson, m + 1, r, a, b));
	
	return res;
}

ll getMx(int rt, int l, int r, int a, int b) {
	if (l >= a && r <= b) {
		return mx[rt];
	}
	int m = (l + r) >> 1;
	ll res = -inf;
	if (a <= m) res = getMx(lson, l, m, a, b);
	if (m < b) res = max(res, getMx(rson, m + 1, r, a, b));
	
	return res;
}

void init() {
	scanf("%d%d", &n, &q);
	for (int i = 1; i <= n; ++i) {
		scanf("%lld", &sum[i]);
	}
	for (int i = 1; i <= n; ++i) {
		scanf("%d", &x);
		sum[i] = x - sum[i];
	}
	
	sum[0] = 0;
	for (int i = 1; i <= n; ++i) {
		sum[i] += sum[i-1];
	}
}
int main() {
	init();
	build(1, 1, n);
	while (q--) {
		int l, r;
		scanf("%d%d", &l, &r);
		if (sum[r] != sum[l-1] || sum[l-1] > getMn(1, 1, n, l, r)) {
			printf("-1\n");
			continue;
		}
		ll res = getMx(1, 1, n, l, r) - sum[l-1];
		printf("%lld\n", res);
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Sequential Equilibrium(序惯均衡)是精炼纳什均衡的一种形式,它是由不包含不可置信行动的战略所组成的纳什均衡。在序惯均衡中,构成该均衡的战略在每个决策点上都是最优的。因此,序惯均衡也被称为"精炼纳什均衡"或"序惯均衡"。需要注意的是,并非所有的纳什均衡都是合理的,只有那些战略不包含不可置信行动的纳什均衡才是合理的。不可置信威胁是指由于事前最优和事后最优不同而导致的许多帕累托效率无法实现的情况。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [博弈论笔记:动态博弈](https://blog.csdn.net/qq_40206371/article/details/117626623)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [机器学习(ML)、深度学习(DL)和图像处理(opencv)专用英语词典](https://blog.csdn.net/wyx100/article/details/74635853)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值