E - Coloring(组合数学/图论/dfs/dp)

题目

题意:

给定n个点 ( x i , y i ) (x_i,y_i) (xi,yi),2<=n<=100。给定n种颜色。两点间的距离用欧几里得距离表示: d ( x i , x j ) = ∣ x i − x j ∣ + ∣ y i − y j ∣ d(x_i,x_j)=|x_i-x_j|+|y_i-y_j| d(xi,xj)=xixj+yiyj。现给这n个点进行染色,要求满足:

  • 条件1:如果点a,b,c颜色相同,那么要求 d ( a , b ) = d ( a , c ) = d ( b , c ) d(a,b)=d(a,c)=d(b,c) d(a,b)=d(a,c)=d(b,c)
  • 条件2:如果a和b颜色相同,且和c颜色不同,那么要求 d ( a , b ) < d ( a , c ) , d ( a , b ) < d ( b , c ) d(a,b)<d(a,c),d(a,b)<d(b,c) d(a,b)<d(a,c),d(a,b)<d(b,c)

计算有多少种染色的方式,能满足上述条件。

参考

思路:

先构图。定义有向边 i − > j i->j i>j,如果点j是与点i的距离最小的点。
定义 s ( i ) s(i) s(i)表示从点i出发,可达的所有点,包括点i本身。
定义点i为孤立点,如果点i的颜色和其他任意点的颜色都不同。
如果点i不是孤立点,那么 s ( i ) s(i) s(i)所有点颜色相同。
证明:

分类讨论

  • s ( i ) s(i) s(i)中存在点j,k,但不存在从点j到点k的有向路径。
  • 对于 s ( i ) s(i) s(i)中的任意点j,k,均存在从点j到点k的有向路径。

上述分类,等价于

  • s ( i ) s(i) s(i)中存在点j,k,l, d ( j , k ) ! = d ( j , l ) d(j,k)!=d(j,l) d(j,k)!=d(j,l)
  • 对于 s ( i ) s(i) s(i)中的任意点j,k,l, d ( j , k ) = = d ( j , l ) d(j,k)==d(j,l) d(j,k)==d(j,l)

对于第1种情况,点i只能为孤立点。
证明:假设i不是孤立点,存在边 i − > j i->j i>j。如果不存在边 j − > i j->i j>i,不妨设离j最近的点为k,此时有i,j颜色相同,而 d ( j , k ) < d ( i , j ) d(j,k)<d(i,j) d(j,k)<d(i,j),不管k取相同颜色,还是不同颜色,都不能满足上述的两个条件。如果存在边 j − > i j->i j>i,我们可以继续找其他的点k,使得其满足不存在边 k − > i k->i k>i或不满足 k − > i k->i k>i即可(因为根据情况1,我们总能找到的)。

对于第2种情况, s ( i ) s(i) s(i)可以选择相同颜色,也选择全部不同的颜色。这个根据条件1,很好理解。

有了以上两个结合,我们即可计算了。定义 d p [ i ] [ j ] dp[i][j] dp[i][j]表示取前i个点集,用j种颜色,可以组成的方案数。最终答案为 ∑ j = 1 n d p [ m ] [ j ] ∗ A ( n , j ) \sum_{j=1}^ndp[m][j]*A(n,j) j=1ndp[m][j]A(n,j),其中m表示建图组成的孤立点+点集个数。

代码

#include<bits/stdc++.h>

using namespace std;

const int N = 143;
const int K = 5;
const int MOD = 998244353;

int add(int x, int y)
{
    x += y;
    while(x >= MOD) x -= MOD;
    while(x < 0) x += MOD;
    return x;   
}

int mul(int x, int y)
{
    return (x * 1ll * y) % MOD;
}

int binpow(int x, int y)
{
    int z = 1;
    while(y > 0)
    {
        if(y % 2 == 1) z = mul(z, x);
        x = mul(x, x);
        y /= 2;
    }
    return z;
}

int fact[N];
int rfact[N];

int A(int n, int k)
{
    return mul(fact[n], rfact[n - k]);
}

int n;

vector<int> g[N];
int x[N];
int y[N];
int dist[N][N];
int color[N];
int dp[N][N];

int cc = 0;
set<int> pts;
vector<int> compsize;

void dfs1(int i)
{
    //cerr << i << endl;
    if(pts.count(i) == 1) return;
    pts.insert(i);
    for(auto v : g[i])
    {
        dfs1(v);
    }
}

void dfs2(int i, int c)
{
    if(color[i] == c) return;
    color[i] = c;
    for(auto v : g[i])
        dfs2(v, c);
}

int main()
{
    fact[0] = 1;
    for(int i = 1; i < N; i++)
        fact[i] = mul(i, fact[i - 1]);
    for(int i = 0; i < N; i++)
        rfact[i] = binpow(fact[i], MOD - 2);


    scanf("%d", &n);
    for(int i = 0; i < n; i++)
    {
        scanf("%d %d", &x[i], &y[i]);    
    }
    for(int i = 0; i < n; i++)
    {
        dist[i][i] = int(1e9);
        for(int j = 0; j < n; j++)
            if(i != j)
                dist[i][j] = abs(x[i] - x[j]) + abs(y[i] - y[j]);
    }
    for(int i = 0; i < n; i++)
    {
        int d = *min_element(dist[i], dist[i] + n);
        for(int j = 0; j < n; j++)
            if(dist[i][j] == d) g[i].push_back(j);    
    }

    for(int i = 0; i < n; i++)
    {
        if(color[i] != 0) continue;
        cc++;
        pts.clear();
        dfs1(i);
        //cerr << "!" << endl; 
        int d = *min_element(dist[i], dist[i] + n);                      
        set<int> pts2 = pts;
        bool bad = false;
        for(auto x : pts)
            for(auto y : pts2)
                if(x != y && dist[x][y] != d)
                    bad = true;
        if(bad)           
        {
            color[i] = cc;
            compsize.push_back(1);
        }
        else
        {
            dfs2(i, cc);
            compsize.push_back(pts.size());
        }
    }            

    dp[0][0] = 1;
    int m = compsize.size();
    for(int i = 0; i < m; i++)
        for(int j = 0; j < n; j++)
        {
            if(dp[i][j] == 0) continue;
            dp[i + 1][j + 1] = add(dp[i + 1][j + 1], dp[i][j]);
            if(compsize[i] != 1)
            {
                dp[i + 1][j + compsize[i]] = add(dp[i + 1][j + compsize[i]], dp[i][j]);
            }
        }
    int ans = 0;
    for(int i = 1; i <= n; i++)
        ans = add(ans, mul(dp[m][i], A(n, i)));
    cout << ans << endl;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值