E. Prefix Function Queries(KMP)

题目

代码参考

题意

给定字符串s,q个查询
每次查询,给定字符串s2,令s3 = s + s2。求s3[len(s), len(s) + 1, …, len(s) + len(s2) -1]这些位置的前缀函数值。

字符串s在下标pos的前缀函数值定义,求最大的mx,使得
s[0,1, …, mx - 1] == s[pos - mx + 1, …, pos]
若不存在任意一个前缀,则mx取-1。

数据范围
1<=len(s)<=1000000
1<=q<=100000
1<=len(s2)<=10

思路

前缀函数值的定义,实际上就是KMP算法中的next数组。

有多次查询,可以考虑优化。
我们把所有查询的字符串,按照字典序排序
这样,每次计算前,我们可以尽量复用上一个字符串的next值。

详见代码。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1000020;
const int maxq = 100010;

string s, s2;
int lens, n, q, len2;
int nxt[maxn];
vector<int> ans[maxq];
vector<pair<string, int> > strs;

void print_nxt(int n) {
	cout << "nxt: ";
	for (int i = 0; i < n; ++i) {
		cout << nxt[i] << " ";
	}
	cout << endl;
}

// KMP 计算 s[st, ..., ed-1] 的nxt值 
// cal_ans为真时,用于计算ans[pos] 
// nxt值含义:
// 令k = nxt[i]表示 s[0, ...  k] == s[i-k, ... i]
// nxt[i]为-1,表示不存在前缀s与之匹配 
void kmp(int st, int ed, bool cal_ans, int pos)  {
	int j = nxt[st-1];
	for (int i = st; i < ed; ++i) {
		while (j != -1 && s[j+1] != s[i]) {
			j = nxt[j];
		}
		if (s[j+1] == s[i]) {
			++j;
		}
		nxt[i] = j;
		if (cal_ans) {
			ans[pos].push_back(j + 1);
		}
	}
}

void print_ans() {
	for (int i = 0; i < q; ++i) {
		for (auto v: ans[i]) {
			cout << v << " ";
		}
		cout << endl;
	}
}
void solve() {
	cin >> s;
	lens = s.length();
	
	// kmp 初始化 
	nxt[0] = -1;
	kmp(1, lens, false, -1);
//	print_nxt(lens); // debug
	s += "ddddddddddddddd";// 扩容处理 
	
	cin >> q;
	for (int i = 0; i < q; ++i) {
		cin >> s2;
		strs.push_back({s2, i});
	}
	sort(strs.begin(), strs.end()); // 字典序排序
	
	
	for (int i = 0; i < q; ++i) {
		s2 = strs[i].first;
		int pos = strs[i].second;
		len2 = s2.length();
		// 初始化 s[lens, ..., lens+len2-1] 
		for (int j = lens; j < lens + len2; ++j) {
			s[j] = s2[j-lens];
		}
		int k = 0;
		if (i) { 
			// 复用之前的nxt数组 
			// 比如前一个是abc, 当前是abd,  则可以复用ab的nxt值 
			int pre_len = strs[i-1].first.length();
			while (k < pre_len && k < len2 && strs[i-1].first[k] == s2[k]) {
				ans[pos].push_back(nxt[lens+k] + 1);
				++k;
			}
		}
		
		// kmp 同时计算ans[pos] 
		kmp(lens + k, lens + len2, true, pos);
//		print_nxt(lens + len2); // debug
	}
	
	print_ans();
}
int main() {
	int t;
//	scanf("%d", &t);
	t = 1;
	while (t--) {
		solve();
	}
}
/*
aba
nxt: -1 -1 0
6
caba
aba
bababa
aaaa
b
forces
nxt: -1 -1 0 0 0 0 0
nxt: -1 -1 0 0 1 2
nxt: -1 -1 0 1
nxt: -1 -1 0 1 2 3 4 5 6
nxt: -1 -1 0 -1 0 1 2
nxt: -1 -1 0 -1 -1 -1 -1 -1 -1
0 1 2 3
1 2 3
2 3 4 5 6 7
1 1 1 1
2
0 0 0 0 0 0

*/

最后

觉得文章不错子,可以weixin 搜索 对方正在debug,文章会首发到gongzhonghao上,一起快乐刷题吧~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值